Finite-time trajectory tracking control of quadrotor UAVs based on neural network disturbance observer and command filter

控制理论(社会学) 跟踪(教育) 弹道 观察员(物理) 扰动(地质) 人工神经网络 计算机科学 滤波器(信号处理) 控制(管理) 控制工程 人工智能 工程类 计算机视觉 心理学 物理 教育学 量子力学 生物 古生物学 天文
作者
Bo‐Ning Li,Ming Chen,Shuaixiang Qi
出处
期刊:International Journal of Systems Science [Informa]
卷期号:: 1-15
标识
DOI:10.1080/00207721.2024.2427852
摘要

The paper proposes a novel finite-time control strategy for quadrotor UAV trajectory tracking using a neural network disturbance observer and a command filter. This method is used to address input saturation and disturbances, ensuring that the UAV can accurately follow the desired trajectory in finite time. The neural network disturbance observer is crucial for approximating external disturbance signals within a finite time, while the finite-time backstepping scheme accelerates the convergence of tracking errors. The command filtering technique is employed to avoid the complex derivation of virtual control laws, simplifying the controller design. The importance of this method lies in its ability to achieve fast, disturbance-resistant trajectory tracking for UAVs, making the control system more robust in practical applications. Simulations were conducted, showing that the proposed control strategy enables the quadrotor UAV to track its desired trajectory effectively, with improved anti-jamming capability. Both filtering and observation errors converged to the equilibrium point, validating the effectiveness of the approach. However, internal factors like actuator failure were not considered, pointing to future work in refining the method and applying it in real-world UAV experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实的傲白完成签到 ,获得积分0
1秒前
2秒前
3秒前
Ambition9发布了新的文献求助10
4秒前
Hello应助金桔儿采纳,获得10
4秒前
5秒前
6秒前
充电宝应助Catherine_Song采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
予秋发布了新的文献求助10
8秒前
杉杉发布了新的文献求助10
9秒前
10秒前
11秒前
李曼婷发布了新的文献求助10
12秒前
科研通AI6应助阿卡米星采纳,获得10
12秒前
快乐绝悟完成签到,获得积分10
13秒前
小牧鱼完成签到,获得积分10
13秒前
萌萌雨发布了新的文献求助10
13秒前
CipherSage应助杉杉采纳,获得30
14秒前
14秒前
大个应助Luke采纳,获得10
15秒前
16秒前
萌萌发布了新的文献求助10
16秒前
16秒前
科研小小白完成签到 ,获得积分10
16秒前
17秒前
17秒前
17秒前
kytm完成签到,获得积分10
17秒前
18秒前
最佳损友塔图姆完成签到,获得积分10
19秒前
19秒前
20秒前
科研通AI6应助miles采纳,获得10
20秒前
jieni完成签到,获得积分10
20秒前
May想吃烤肉完成签到,获得积分10
20秒前
yu发布了新的文献求助10
20秒前
李曼婷完成签到,获得积分10
21秒前
英姑应助舒适的新波采纳,获得30
22秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584366
求助须知:如何正确求助?哪些是违规求助? 4667892
关于积分的说明 14769849
捐赠科研通 4610340
什么是DOI,文献DOI怎么找? 2529769
邀请新用户注册赠送积分活动 1498755
关于科研通互助平台的介绍 1467307