清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Investigating the Surface Damage to Fuzhou’s Ancient Houses (Gu-Cuo) Using a Non-Destructive Testing Method Constructed via Machine Learning

人工智能 曲面(拓扑) 工程类 艺术 考古 计算机科学 数学 地理 几何学
作者
Lei Zhang,Yile Chen,Liang Zheng,Bo Yan,Jiali Zhang,Anshi Xie,Senyu Lou
出处
期刊:Coatings [Multidisciplinary Digital Publishing Institute]
卷期号:14 (11): 1466-1466
标识
DOI:10.3390/coatings14111466
摘要

As an important part of traditional Chinese architecture, Fuzhou’s ancient houses have unique cultural and historical value. However, over time, environmental factors such as efflorescence and plant growth have caused surface damage to their gray brick walls, leading to a decline in the quality of the buildings’ structure and even posing a threat to the buildings’ safety. Traditional damage detection methods mainly rely on manual labor, which is inefficient and consumes a lot of human resources. In addition, traditional non-destructive detection methods, such as infrared imaging and laser scanning, often face difficulty in accurately identifying specific types of damage, such as efflorescence and plant growth, on the surface of gray bricks and are easily hampered by diverse surface features. This study uses the YOLOv8 machine learning model for the automated detection of two common types of damage to the gray brick walls of Fuzhou’s ancient houses: efflorescence and plant growth. We establish an efficient gray brick surface damage detection model through dataset collection and annotation, experimental parameter optimization, model evaluation, and analysis. The research results reveal the following. (1) Reasonable hyperparameter settings and model-assisted annotation significantly improve the detection accuracy and stability. (2) The model’s average precision (AP) is improved from 0.30 to 0.90, demonstrating good robustness in detecting complex backgrounds and high-resolution real-life images. The F1 value of the model’s gray brick detection efficiency is improved (classification model performance index) from 0.22 to 0.77. (3) The model’s ability to recognize the damage details of gray bricks under high-resolution conditions is significantly enhanced, demonstrating its ability to cope with complex environments. (4) The simplified data enhancement strategy effectively reduces the feature extraction interference and enhances the model’s adaptability in different environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王波完成签到 ,获得积分10
2秒前
xiaoyi完成签到 ,获得积分10
5秒前
哈哈哈完成签到 ,获得积分10
5秒前
FloppyWow完成签到 ,获得积分10
15秒前
xianyaoz完成签到 ,获得积分0
15秒前
烟花应助飞翔的企鹅采纳,获得10
19秒前
21秒前
氟锑酸完成签到 ,获得积分10
24秒前
学术骗子小刚完成签到,获得积分0
24秒前
枫林摇曳完成签到 ,获得积分0
25秒前
体贴问丝完成签到 ,获得积分10
30秒前
慕青应助hhh采纳,获得10
34秒前
geold完成签到,获得积分10
39秒前
42秒前
42秒前
hhh发布了新的文献求助10
47秒前
48秒前
成成完成签到 ,获得积分10
50秒前
55秒前
打打应助hhh采纳,获得10
56秒前
风中的西牛风吹得蛋颤完成签到,获得积分10
57秒前
1分钟前
1分钟前
1分钟前
尉迟明风完成签到 ,获得积分10
1分钟前
科研狗的春天完成签到 ,获得积分10
1分钟前
hhh发布了新的文献求助10
1分钟前
Dave完成签到 ,获得积分10
1分钟前
ke完成签到,获得积分10
1分钟前
孤傲的静脉完成签到 ,获得积分10
1分钟前
QY完成签到 ,获得积分10
1分钟前
keyan123完成签到 ,获得积分10
1分钟前
hhh发布了新的文献求助10
1分钟前
默默的筝完成签到 ,获得积分10
1分钟前
1分钟前
和谐的夏岚完成签到 ,获得积分10
1分钟前
ewind完成签到 ,获得积分10
1分钟前
酷炫书芹完成签到 ,获得积分10
1分钟前
hhh发布了新的文献求助10
1分钟前
1分钟前
高分求助中
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
《上海道契1-30卷(1847—1911)》 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3705035
求助须知:如何正确求助?哪些是违规求助? 3254414
关于积分的说明 9888582
捐赠科研通 2966159
什么是DOI,文献DOI怎么找? 1626763
邀请新用户注册赠送积分活动 771150
科研通“疑难数据库(出版商)”最低求助积分说明 743190