清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Combining Biology-based and MRI Data-driven Modeling to Predict Response to Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer

乳腺癌 一致性 三阴性乳腺癌 医学 新辅助治疗 一致相关系数 化疗 卷积神经网络 癌症 人工智能 肿瘤科 医学物理学 放射科 内科学 计算机科学 统计 数学
作者
Casey Stowers,Chengyue Wu,Zhan Xu,Sidharth Kumar,Clinton Yam,Jong Bum Son,Jingfei Ma,Jonathan I. Tamir,Gaiane M. Rauch,Thomas E. Yankeelov
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240124
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To combine deep learning and biology-based modeling to predict the response of locally advanced, triple negative breast cancer before initiating neoadjuvant chemotherapy (NAC). Materials and Methods In this retrospective study, a biology-based mathematical model of tumor response to NAC was constructed and calibrated on a patient-specific basis using imaging data from patients enrolled in the MD Anderson ARTEMIS trial ( ClinicalTrials.gov , NCT02276443) between April 2018 and May 2021. To relate the calibrated parameters in the biology-based model and pretreatment MRI data, a convolutional neural network (CNN) was employed. The CNN predictions of the calibrated model parameters were used to estimate tumor response at the end of NAC. CNN performance in the estimations of total tumor volume (TTV), total tumor cellularity (TTC), and tumor status was evaluated. Model-predicted TTC and TTV measurements were compared with MRI-based measurements using the concordance correlation coefficient (CCC), and area under the receiver operating characteristic curve (for predicting pathologic complete response at the end of NAC). Results The study included 118 female patients (median age, 51 [range, 29-78] years). For comparison of CNN predicted to measured change in TTC and TTV over the course of NAC, the CCCs were 0.95 (95% CI: 0.90–0.98) and 0.94 (95% CI: 0.87–0.97), respectively. CNN-predicted TTC and TTV had an AUC of 0.72 (95% CI: 0.34–0.94) and 0.72 (95% CI: 0.40–0.95) for predicting tumor status at the time of surgery, respectively. Conclusion Deep learning integrated with a biology-based mathematical model showed good performance in predicting the spatial and temporal evolution of a patient’s tumor during NAC using only pre-NAC MRI data. ©RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4分钟前
6分钟前
Jeriu发布了新的文献求助10
6分钟前
A,w携念e行ོ完成签到,获得积分10
6分钟前
7分钟前
丹晨发布了新的文献求助10
7分钟前
小二郎应助汎影采纳,获得10
9分钟前
9分钟前
Orange应助郜南烟采纳,获得10
9分钟前
汎影发布了新的文献求助10
9分钟前
汎影完成签到,获得积分10
9分钟前
DaSheng完成签到,获得积分10
12分钟前
慕青应助熊猫胖大怂采纳,获得10
13分钟前
tt耶完成签到 ,获得积分10
14分钟前
14分钟前
郜南烟发布了新的文献求助10
14分钟前
14分钟前
14分钟前
熊猫胖大怂完成签到,获得积分10
14分钟前
领导范儿应助郜南烟采纳,获得10
14分钟前
杨明明发布了新的文献求助10
15分钟前
joanna完成签到,获得积分10
15分钟前
听话的招牌完成签到,获得积分10
15分钟前
gwbk完成签到,获得积分10
15分钟前
顾矜应助光能使者采纳,获得10
16分钟前
16分钟前
光能使者发布了新的文献求助10
16分钟前
16分钟前
18分钟前
郜南烟发布了新的文献求助10
18分钟前
SciGPT应助郜南烟采纳,获得10
18分钟前
Meredith完成签到,获得积分10
21分钟前
21分钟前
郜南烟发布了新的文献求助10
21分钟前
舒心豪英完成签到 ,获得积分10
22分钟前
22分钟前
23分钟前
郜南烟发布了新的文献求助10
23分钟前
可爱的函函应助郜南烟采纳,获得10
23分钟前
Miracle完成签到,获得积分10
23分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146771
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826647
捐赠科研通 2454573
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527