Imaging of permeability defect distribution by electromagnetic tomography with hybrid L1 norm and nuclear norm penalty terms

计算机科学 迭代重建 断层摄影术 算法 数学优化 数学 人工智能 物理 光学
作者
Xianglong Liu,Kun Zhang,Ying Wang,Danyang Li,Huilin Feng
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (11)
标识
DOI:10.1063/5.0233276
摘要

Electromagnetic tomography (EMT), with the advantages of being non-contact, non-invasiveness, low cost, simple structure, and fast imaging speed, is a multi-functional tomography technique based on boundary measurement voltages to image the conductivity distribution within the sensing field. EMT is widely used in industrial and biomedical fields. Currently, there are few studies on the application of EMT in magnetic permeability materials, which makes it difficult to obtain high-quality reconstructed images due to its own properties that lead to obvious attenuation of electromagnetic waves during propagation, as well as the ill-posed and ill-conditioned characteristics of EMT. In this paper, a multi-feature objective function integrating L2 norm regularization, L1 norm regularization, and low-rank norm regularization is proposed to solve the challenge of magnetic permeability material imaging. This approach emphasizes the smoothness and sparsity. The split Bregman algorithm is introduced to efficiently solve the proposed objective function by decomposing the complex optimization problem into several simple sub-task iterative schemes. In addition, a nine-coil planar array electromagnetic sensor was developed and a flexible modular EMT system was constructed. We use correlation coefficient and error coefficient as indicators to evaluate the performance of the proposed image reconstruction algorithm. The effectiveness of the proposed method in improving the reconstruction accuracy and robustness is verified through numerical simulations and experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Nathan发布了新的文献求助10
1秒前
kaixing发布了新的文献求助30
1秒前
隐形曼青应助oguricap采纳,获得10
1秒前
诸葛朝雪发布了新的文献求助10
1秒前
yommi发布了新的文献求助10
1秒前
芦苇秋发布了新的文献求助10
1秒前
2秒前
喜悦囧完成签到 ,获得积分10
2秒前
APRIL_SKY完成签到,获得积分10
2秒前
执着手套完成签到,获得积分10
3秒前
Jasper应助fighting采纳,获得10
3秒前
恶恶么v发布了新的文献求助10
3秒前
所所应助满增明采纳,获得10
3秒前
wzq完成签到,获得积分10
3秒前
慕青应助迅速的念芹采纳,获得10
4秒前
www完成签到,获得积分10
5秒前
HongJiang完成签到,获得积分10
5秒前
fxx完成签到,获得积分10
5秒前
ZW发布了新的文献求助10
5秒前
爬得飞快的仲文博完成签到,获得积分10
6秒前
6秒前
6秒前
小鑫应助zxvcbnm采纳,获得10
6秒前
呆萌笑晴完成签到,获得积分10
6秒前
李健应助可爱慕卉采纳,获得10
7秒前
顾矜应助Jane采纳,获得10
7秒前
碧蓝一江完成签到,获得积分10
7秒前
9秒前
荔枝凉发布了新的文献求助100
9秒前
大模型应助科研通管家采纳,获得10
9秒前
xjcy应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
Bearling完成签到,获得积分10
9秒前
xjcy应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
xjcy应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217251
求助须知:如何正确求助?哪些是违规求助? 2866489
关于积分的说明 8151913
捐赠科研通 2533143
什么是DOI,文献DOI怎么找? 1366092
科研通“疑难数据库(出版商)”最低求助积分说明 644672
邀请新用户注册赠送积分活动 617642