Imaging of permeability defect distribution by electromagnetic tomography with hybrid L1 norm and nuclear norm penalty terms

计算机科学 迭代重建 断层摄影术 算法 数学优化 数学 人工智能 物理 光学
作者
Xianglong Liu,Kun Zhang,Ying Wang,Danyang Li,Huilin Feng
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (11)
标识
DOI:10.1063/5.0233276
摘要

Electromagnetic tomography (EMT), with the advantages of being non-contact, non-invasiveness, low cost, simple structure, and fast imaging speed, is a multi-functional tomography technique based on boundary measurement voltages to image the conductivity distribution within the sensing field. EMT is widely used in industrial and biomedical fields. Currently, there are few studies on the application of EMT in magnetic permeability materials, which makes it difficult to obtain high-quality reconstructed images due to its own properties that lead to obvious attenuation of electromagnetic waves during propagation, as well as the ill-posed and ill-conditioned characteristics of EMT. In this paper, a multi-feature objective function integrating L2 norm regularization, L1 norm regularization, and low-rank norm regularization is proposed to solve the challenge of magnetic permeability material imaging. This approach emphasizes the smoothness and sparsity. The split Bregman algorithm is introduced to efficiently solve the proposed objective function by decomposing the complex optimization problem into several simple sub-task iterative schemes. In addition, a nine-coil planar array electromagnetic sensor was developed and a flexible modular EMT system was constructed. We use correlation coefficient and error coefficient as indicators to evaluate the performance of the proposed image reconstruction algorithm. The effectiveness of the proposed method in improving the reconstruction accuracy and robustness is verified through numerical simulations and experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
superhero完成签到,获得积分10
3秒前
Jason-1024发布了新的文献求助10
3秒前
田様应助小火苗采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
Hoyal_He完成签到,获得积分10
5秒前
6秒前
6秒前
LHR发布了新的文献求助10
6秒前
艺玲发布了新的文献求助10
8秒前
开朗芸遥发布了新的文献求助10
8秒前
澡雪发布了新的文献求助10
9秒前
无私的香菇完成签到,获得积分10
9秒前
9秒前
asdfqwer发布了新的文献求助10
10秒前
LV发布了新的文献求助10
10秒前
10秒前
小鱼儿完成签到,获得积分10
10秒前
猫猫熊发布了新的文献求助10
11秒前
lei发布了新的文献求助20
14秒前
14秒前
彭于晏应助开朗芸遥采纳,获得10
16秒前
19秒前
20秒前
20秒前
21秒前
zyn发布了新的文献求助10
21秒前
21秒前
22秒前
英姑应助LV采纳,获得10
22秒前
桐桐应助猫猫熊采纳,获得10
22秒前
在水一方应助澡雪采纳,获得10
23秒前
平常映雁完成签到,获得积分10
23秒前
25秒前
ling发布了新的文献求助10
26秒前
hjy完成签到,获得积分10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976058
求助须知:如何正确求助?哪些是违规求助? 3520294
关于积分的说明 11202245
捐赠科研通 3256804
什么是DOI,文献DOI怎么找? 1798471
邀请新用户注册赠送积分活动 877610
科研通“疑难数据库(出版商)”最低求助积分说明 806496