Identifying differentially expressed genes (DEGs) is a core task of transcriptome analysis, as DEGs can reveal the molecular mechanisms underlying biological processes. However, interpreting the biological significance of large DEG lists is challenging. Currently, gene ontology, pathway enrichment and protein-protein interaction analysis are common strategies employed by biologists. Additionally, emerging analytical strategies/approaches (such as network module analysis, knowledge graphs, drug repurposing, cell marker discovery, trajectory analysis, and cell communication analysis) have been proposed. Despite these advances, comprehensive guidelines for systematically and thoroughly mining the biological information within DEGs remain lacking.