Identification of Dental Implant Systems Using a Large-Scale Multicenter Data Set

医学 鉴定(生物学) 比例(比率) 牙科 牙种植体 植入 数据集 计算机科学 人工智能 外科 地理 生物 地图学 植物
作者
Wonse Park,Falk Schwendicke,Joachim Krois,Jong‐Ki Huh,Jae‐Hong Lee
出处
期刊:Journal of Dental Research [SAGE]
卷期号:102 (7): 727-733 被引量:16
标识
DOI:10.1177/00220345231160750
摘要

This study aimed to evaluate the efficacy of deep learning (DL) for the identification and classification of various types of dental implant systems (DISs) using a large-scale multicenter data set. We also compared the classification accuracy of DL and dental professionals. The data set, which was collected from 5 college dental hospitals and 10 private dental clinics, contained 37,442 (24.8%) periapical and 113,291 (75.2%) panoramic radiographic images and consisted of a total of 10 manufacturers and 25 different types of DISs. The classification accuracy of DL was evaluated using a pretrained and modified ResNet-50 architecture, and comparison of accuracy performance and reading time between DL and dental professionals was conducted using a self-reported questionnaire. When comparing the accuracy performance for classification of DISs, DL (accuracy: 82.0%; 95% confidence interval [CI], 75.9%–87.0%) outperformed most of the participants (mean accuracy: 23.5% ± 18.5%; 95% CI, 18.5%–32.3%), including dentists specialized (mean accuracy: 43.3% ± 20.4%; 95% CI, 12.7%–56.2%) and not specialized (mean accuracy: 16.8% ± 9.0%; 95% CI, 12.8%–20.9%) in implantology. In addition, DL tends to require lesser reading and classification time (4.5 min) than dentists who specialized (75.6 ± 31.0 min; 95% CI, 13.1–78.4) and did not specialize (91.3 ± 38.3 min; 95% CI, 74.1–108.6) in implantology. DL achieved reliable outcomes in the identification and classification of various types of DISs, and the classification accuracy performance of DL was significantly superior to that of specialized or nonspecialized dental professionals. DL as a decision support aid can be successfully used for the identification and classification of DISs encountered in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
NZH发布了新的文献求助30
1秒前
kitsch完成签到,获得积分10
1秒前
Wendy1204发布了新的文献求助10
2秒前
3秒前
李健的小迷弟应助fujun0095采纳,获得10
4秒前
hhy发布了新的文献求助10
4秒前
脑洞疼应助lemonhow采纳,获得10
5秒前
Ysheng发布了新的文献求助10
5秒前
聪明藏今关注了科研通微信公众号
6秒前
6秒前
123发布了新的文献求助10
6秒前
卫海亦发布了新的文献求助10
6秒前
思源应助完美诺言采纳,获得10
6秒前
7秒前
7秒前
7秒前
小蚊子完成签到,获得积分10
8秒前
博弈春秋应助钟志成采纳,获得10
8秒前
Zhang发布了新的文献求助10
8秒前
Trico完成签到,获得积分20
8秒前
kitsch发布了新的文献求助30
8秒前
华仔应助ceci采纳,获得10
8秒前
扎心应助咯咯采纳,获得10
9秒前
Owen应助研友_Z1450n采纳,获得30
9秒前
Orange应助Wendy1204采纳,获得10
9秒前
shizaibide1314完成签到,获得积分10
10秒前
嘎嘎嘎嘎发布了新的文献求助10
11秒前
晓凡完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
Liu Xiaojing发布了新的文献求助200
13秒前
13秒前
陈瑶完成签到,获得积分10
13秒前
14秒前
fancyyyy完成签到,获得积分10
14秒前
15秒前
慕青应助alyes采纳,获得10
15秒前
Lshyong发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152854
求助须知:如何正确求助?哪些是违规求助? 2804064
关于积分的说明 7856939
捐赠科研通 2461847
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788