材料科学
复合材料
电介质
热导率
聚四氟乙烯
造型(装饰)
碳化硅
介电损耗
复合数
压缩成型
多孔性
光电子学
模具
作者
Yanhong Feng,Tao Chen,Shuo Gao,Xiaochun Yin,Guizhen Zhang
标识
DOI:10.1002/marc.202300136
摘要
In order to enhance the thermal conductivity of polytetrafluoroethylene (PTFE)-based composites, while maintaining relatively low dielectric constant and dielectric loss for high-frequency and high-speed applications, hexagonal boron nitride (hBN) and silicon carbide (SiC) compounded fillers are filled into the PTFE matrix. The hBN/SiC/PTFE composites are prepared by pulse vibration molding (PVM), and their subsequent thermal conductivities are comparatively investigated. The PVM process with controlled fluctuation in pressure (1 Hz square wave force, 0-20 MPa, at 150 °C) can reduce the sample porosity and surface defects, improve the orientation of hBN, and increase the thermal conductivity by 44.6% compared with that obtained by compression molding. When hBN:SiC (vol) is 3:1, the in-plane thermal conductivity of the composite with 40 vol% filler content is ≈4.83 W m-1 K-1 , which is 40.3% higher than that of hBN/PTFE. Regarding the dielectric properties, hBN/SiC/PTFE maintains a low dielectric constant of 3.27 and a low dielectric loss of 0.0058. The dielectric constants of hBN/SiC/PTFE ternary composites are predicted by using different prediction models, among which the effective medium theory (EMT), is in good agreement with the experimental results. PVM shows great potential in the large-scale preparation of thermal conductive composites for high-frequency and high-speed applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI