材料科学
位错
辐照
原子探针
空位缺陷
奥氏体
微观结构
再分配(选举)
Atom(片上系统)
结晶学
辐射损伤
凝聚态物理
分子物理学
冶金
复合材料
核物理学
法学
计算机科学
化学
政治学
嵌入式系统
物理
政治
作者
Cong Dai,Peyman Saidi,Brian Langelier,Q. Wang,C. D. Judge,Mark R. Daymond,Mitchell Mattucci
出处
期刊:Physical Review Materials
[American Physical Society]
日期:2022-05-20
卷期号:6 (5)
被引量:8
标识
DOI:10.1103/physrevmaterials.6.053606
摘要
Radiation-induced segregation of alloying elements to crystallographic defects is commonly observed in irradiated austenitic stainless steels. The interaction between solutes and radiation-induced defects changes the physical distribution of solutes and thus affects the formation and growth of defects. The change of the microstructure consequently affects the mechanical properties of the material. A qualitative and quantitative understanding of the interaction between solutes and defects is desirable to better predict the service lifetime of nuclear materials. We used atom probe tomography to measure the distribution of solutes at dislocation loops in 304L stainless steel, irradiated with 2 MeV protons up to 1.5 displacements per atom at 373 and 633 K. No segregation at dislocation loops was found in samples irradiated at 373 K, whereas Ni and Si enrichment and Cr depletion were detected at dislocation loops irradiated at 633 K. The experimentally observed perfect and faulted dislocation loops in vacancy and interstitial types were reproduced by molecular dynamics (MD). A hybrid MD/Monte Carlo method was used to predict the redistribution of alloying atoms at all possible types of dislocation loops in face-centered cubic Fe-Cr-Ni alloys at the same irradiated temperatures (373 and 633 K). The simulations show that, at both temperatures, Cr clusters were formed and distributed randomly, and Ni atoms enriched or depleted at interstitial or vacancy dislocation loops, respectively. The change of solute concentration reaches the highest at the edge of the loop. Ni profiles exhibit characteristic behavior in terms of the stress field of the loops: tension inside of vacancy loops showing depletion of Ni atoms compared with compression inside of interstitial loops showing enrichment of Ni atoms. In addition, the stress field is reduced after solute redistribution. The absence of alloying segregation observed in experiments at a lower temperature (373 K) is explained by a rate theory model: Low-temperature irradiation requires significantly longer irradiation time to see the same amount of segregation as at high temperatures because of the extremely low diffusion of vacancies at low temperatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI