Segmentation algorithm for overlap recognition of seedling lettuce and weeds based on SVM and image blocking

阻塞(统计) 苗木 人工智能 支持向量机 模式识别(心理学) 分割 计算机科学 图像(数学) 图像分割 计算机视觉 生物 植物 计算机网络
作者
Lei Zhang,Zhien Zhang,Chuanyu Wu,Liang Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:201: 107284-107284 被引量:14
标识
DOI:10.1016/j.compag.2022.107284
摘要

• Introduce image block technology to equally divide the overlapping leaf images and label the image sub-blocks. • Use genetic algorithm to optimize support vector machine, and compare and analyze the recognition performance of single texture feature or texture combination of different fusion strategies, and get the optimal feature fusion strategy. • An image block reconstruction method based on the comparison of the center point and eight-neighbor label value is proposed, and this is combined with the proportion of image blocks of two labels for comprehensive judgment. For the problem of a low recognition rate and shape feature failure caused by overlapping seedlings and weeds during the development of an intelligent lettuce weeding robot, a method to identify seedling lettuce and weeds based on an image block and support vector machine (SVM) is proposed, which realizes their precise identification and boundary segmentation. The a* channel is used to grayscale the collected image. The Otsu and morphological methods are selected to extract all the green targets in the image. The connected component analysis method is applied to label the green targets with regions of interest (ROIs), and those with pixel areas larger than the area threshold are normalized to 256 × 256 pixels. The image blocking technique is introduced to separately aliquot the normalized ROI, with block sizes of 16 × 16, 32 × 32, and 64 × 64 pixels. On this basis, the image sub-blocks are manually labeled, block by block, to extract three texture features: histogram of oriented gradient (HOG), local binary pattern (LBP), and gray-level co-occurrence matrix (GLCM). With the accuracy of fivefold cross-validation as the optimization objective, a genetic algorithm (GA) is used to optimize the SVM penalty and kernel parameters of 21 groups of research objects (one block size has three texture features, which are arbitrarily combined to form seven research objects, with a total of three block sizes). We compare the recognition performance of the SVM, RF, KNN, and GA-SVM classifiers in a single feature and a combination of fusion strategies through comparative analysis. When the block size is 32 × 32 pixels, the fusion of LBP and GLCM features under the GA-SVM classifier has the highest accuracy, and the optimal SVM model for the identification of lettuce and weeds in the seedling stage is obtained. For the misidentified image sub-blocks in optimization model recognition, an image block reconstruction method based on the comparison of the center point and eight-neighbor label value is proposed, and this is combined with the proportion of image blocks of two labels for comprehensive judgment. The center point label value is reconstructed to the improve recognition accuracy. Experimental results show that the average precision, recall, and F1 score of the proposed method are 0.9473, 0.9529, and 0.9498, respectively, and those of images without overlapping leaves can all reach 1, thus providing a theoretical basis for crop recognition and segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江流有声完成签到 ,获得积分10
刚刚
刚刚
落寞白曼完成签到,获得积分10
刚刚
1秒前
uii完成签到,获得积分10
1秒前
4秒前
雾夜关注了科研通微信公众号
4秒前
愉快的宛儿完成签到,获得积分10
5秒前
light发布了新的文献求助10
5秒前
小马甲应助Lucy采纳,获得10
6秒前
想疯完成签到,获得积分10
7秒前
8秒前
称心绮发布了新的文献求助20
8秒前
CodeCraft应助小天狼星采纳,获得10
8秒前
花开富贵完成签到,获得积分10
9秒前
任性的千柳完成签到,获得积分20
10秒前
林强完成签到,获得积分10
10秒前
乔心发布了新的文献求助10
10秒前
summer夏发布了新的文献求助30
10秒前
赘婿应助yanglian2003采纳,获得10
11秒前
坚强冰枫发布了新的文献求助10
11秒前
在水一方应助zpz采纳,获得10
12秒前
邢海鑫发布了新的文献求助10
13秒前
ZML完成签到,获得积分20
13秒前
qaq完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
斯文败类应助乔心采纳,获得10
15秒前
坚强的芙完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
18秒前
18秒前
谦让的雅青完成签到,获得积分10
18秒前
巅峰囚冰发布了新的文献求助10
18秒前
19秒前
abiu发布了新的文献求助10
20秒前
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129513
求助须知:如何正确求助?哪些是违规求助? 2780318
关于积分的说明 7747496
捐赠科研通 2435637
什么是DOI,文献DOI怎么找? 1294181
科研通“疑难数据库(出版商)”最低求助积分说明 623590
版权声明 600570