亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Segmentation algorithm for overlap recognition of seedling lettuce and weeds based on SVM and image blocking

阻塞(统计) 苗木 人工智能 支持向量机 模式识别(心理学) 分割 计算机科学 图像(数学) 图像分割 计算机视觉 生物 植物 计算机网络
作者
Lei Zhang,Zhien Zhang,Chuanyu Wu,Liang Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:201: 107284-107284 被引量:26
标识
DOI:10.1016/j.compag.2022.107284
摘要

• Introduce image block technology to equally divide the overlapping leaf images and label the image sub-blocks. • Use genetic algorithm to optimize support vector machine, and compare and analyze the recognition performance of single texture feature or texture combination of different fusion strategies, and get the optimal feature fusion strategy. • An image block reconstruction method based on the comparison of the center point and eight-neighbor label value is proposed, and this is combined with the proportion of image blocks of two labels for comprehensive judgment. For the problem of a low recognition rate and shape feature failure caused by overlapping seedlings and weeds during the development of an intelligent lettuce weeding robot, a method to identify seedling lettuce and weeds based on an image block and support vector machine (SVM) is proposed, which realizes their precise identification and boundary segmentation. The a* channel is used to grayscale the collected image. The Otsu and morphological methods are selected to extract all the green targets in the image. The connected component analysis method is applied to label the green targets with regions of interest (ROIs), and those with pixel areas larger than the area threshold are normalized to 256 × 256 pixels. The image blocking technique is introduced to separately aliquot the normalized ROI, with block sizes of 16 × 16, 32 × 32, and 64 × 64 pixels. On this basis, the image sub-blocks are manually labeled, block by block, to extract three texture features: histogram of oriented gradient (HOG), local binary pattern (LBP), and gray-level co-occurrence matrix (GLCM). With the accuracy of fivefold cross-validation as the optimization objective, a genetic algorithm (GA) is used to optimize the SVM penalty and kernel parameters of 21 groups of research objects (one block size has three texture features, which are arbitrarily combined to form seven research objects, with a total of three block sizes). We compare the recognition performance of the SVM, RF, KNN, and GA-SVM classifiers in a single feature and a combination of fusion strategies through comparative analysis. When the block size is 32 × 32 pixels, the fusion of LBP and GLCM features under the GA-SVM classifier has the highest accuracy, and the optimal SVM model for the identification of lettuce and weeds in the seedling stage is obtained. For the misidentified image sub-blocks in optimization model recognition, an image block reconstruction method based on the comparison of the center point and eight-neighbor label value is proposed, and this is combined with the proportion of image blocks of two labels for comprehensive judgment. The center point label value is reconstructed to the improve recognition accuracy. Experimental results show that the average precision, recall, and F1 score of the proposed method are 0.9473, 0.9529, and 0.9498, respectively, and those of images without overlapping leaves can all reach 1, thus providing a theoretical basis for crop recognition and segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
量子星尘发布了新的文献求助10
30秒前
42秒前
1分钟前
gexzygg发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
1分钟前
FashionBoy应助liwen采纳,获得10
1分钟前
Cx完成签到,获得积分10
1分钟前
1分钟前
1分钟前
liwen发布了新的文献求助10
1分钟前
George发布了新的文献求助10
2分钟前
2分钟前
2分钟前
George完成签到,获得积分10
2分钟前
吴端完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
情怀应助玛卡巴卡采纳,获得10
3分钟前
喻初原完成签到 ,获得积分10
3分钟前
阳光的丹雪完成签到,获得积分10
3分钟前
3分钟前
爆米花应助斯提亚拉采纳,获得10
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
斯提亚拉发布了新的文献求助10
4分钟前
天天快乐应助Tree_QD采纳,获得10
4分钟前
斯提亚拉完成签到,获得积分10
4分钟前
5分钟前
吴开珍完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
烟花应助xxywmt采纳,获得10
6分钟前
橘橘橘子皮完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554932
求助须知:如何正确求助?哪些是违规求助? 4639538
关于积分的说明 14656291
捐赠科研通 4581453
什么是DOI,文献DOI怎么找? 2512779
邀请新用户注册赠送积分活动 1487518
关于科研通互助平台的介绍 1458482