TRNet: A Cross-Component Few-Shot Mechanical Fault Diagnosis

计算机科学 人工智能 水准点(测量) 断层(地质) 特征(语言学) 组分(热力学) 模式识别(心理学) 样品(材料) 一般化 深度学习 特征提取 公制(单位) 数据挖掘 机器学习 相似性(几何) 工程类 数学 数学分析 语言学 哲学 物理 化学 运营管理 大地测量学 色谱法 地震学 地理 图像(数学) 热力学 地质学
作者
Mingchen Luo,Juan Xu,Yuqi Fan,Jianjun Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (5): 6883-6894 被引量:13
标识
DOI:10.1109/tii.2022.3204554
摘要

Several deep learning methods have emerged for fault diagnosis of industrial equipment in recent years. However, the realistic dataset is often much smaller than the benchmark diagnostic dataset due to the difficulty of fault data collection and labeling in realistic scenarios. Moreover, the collected fault data may come from various components with different fault categories. Therefore, existing deep-learning-based models have poor generalization capabilities for cases with only a few data when faced with new components. Herein, a triplet relation network (TRNet) is proposed for cross-component few-shot fault diagnosis by learning from several related meta-tasks iteratively. We construct a dual-channel feature embedding module with shared weights to extract fault features and a relation metric module to adaptively measure the feature similarity of sample pairs. Furthermore, in order to distinguish the most dissimilar samples in the same category (i.e., hard positive samples) and the most similar samples in different categories (i.e., hard negative samples), the hard sample recognition module is designed, combined with a triplet loss, to weaken the hard-to-discriminate feature of hard sample pairs, such that the TRNet are capable for task learning and feature learning to improve classification accuracy on target components. We conduct experiments on two publicly available datasets and one lab-built datasets. We validate the proposed method to classify with one, three, or five instances in each category of the target component. The results demonstrate that the fault diagnosis performance of our model is superior to the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼雁完成签到,获得积分20
1秒前
秋霜完成签到 ,获得积分10
3秒前
科目三应助冬虫夏草采纳,获得10
4秒前
whujiege完成签到,获得积分10
4秒前
Akim应助神勇的汉堡采纳,获得10
5秒前
Wanfeng完成签到,获得积分10
5秒前
小扬仔21发布了新的文献求助10
8秒前
yanjiusheng完成签到,获得积分10
10秒前
12秒前
15秒前
Ray完成签到,获得积分10
16秒前
CipherSage应助这个真不懂采纳,获得10
16秒前
时倾发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
科目三应助你好采纳,获得10
18秒前
英俊钢铁侠完成签到,获得积分10
18秒前
19秒前
深情安青应助yangbinsci0827采纳,获得10
19秒前
20秒前
wang发布了新的文献求助10
21秒前
研友_LjVvaL完成签到,获得积分10
22秒前
小马甲应助迅速灵竹采纳,获得10
22秒前
22秒前
刺闰土的瓜瓜完成签到,获得积分20
23秒前
自由过客发布了新的文献求助30
23秒前
PARADOX发布了新的文献求助10
24秒前
mrmaybe发布了新的文献求助10
24秒前
MeiLing完成签到,获得积分10
24秒前
24秒前
25秒前
彩色夜阑完成签到,获得积分10
25秒前
坦率耳机应助彩色的过客采纳,获得10
25秒前
自信筮发布了新的文献求助30
25秒前
魏迎蕾完成签到,获得积分10
27秒前
tian完成签到,获得积分0
28秒前
温婉的慕凝完成签到,获得积分10
29秒前
蓝天发布了新的文献求助10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505840
捐赠科研通 2616702
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648967