Probing the Effect of Rigidity on the Cellular Uptake of Core‐Shell Nanoparticles: Stiffness Effects are Size Dependent

纳米颗粒 胞饮病 内吞作用 材料科学 粒径 纳米技术 刚度(电磁) 生物物理学 纳米医学 化学工程 聚合物 化学 复合材料 细胞 工程类 生物 生物化学
作者
Pratik Gurnani,Carlos Sanchez‐Cano,Helena Xandri‐Monje,Junliang Zhang,Sean H. Ellacott,Edward D. H. Mansfield,Matthias Hartlieb,Robert Dallmann,Sébastien Perrier
出处
期刊:Small [Wiley]
卷期号:18 (38) 被引量:43
标识
DOI:10.1002/smll.202203070
摘要

Abstract Nanoparticles are well established vectors for the delivery of a wide range of biomedically relevant cargoes. Numerous studies have investigated the impact of size, shape, charge, and surface functionality of nanoparticles on mammalian cellular uptake. Rigidity has been studied to a far lesser extent, and its effects are still unclear. Here, the importance of this property, and its interplay with particle size, is systematically explored using a library of core‐shell spherical PEGylated nanoparticles synthesized by RAFT emulsion polymerization. Rigidity of these particles is controlled by altering the intrinsic glass transition temperature of their constituting polymers. Three polymeric core rigidities are tested: hard, medium, and soft using two particle sizes, 50 and 100 nm diameters. Cellular uptake studies indicate that softer particles are taken up faster and threefold more than harder nanoparticles with the larger 100 nm particles. In addition, the study indicates major differences in the cellular uptake pathway, with harder particles being internalized through clathrin‐ and caveolae‐mediated endocytosis as well as macropinocytosis, while softer particles are taken up bycaveolae‐ and non‐receptormediated endocytosis. However, 50 nm derivatives do not show any appreciable differences in uptake efficiency, suggesting that rigidity as a parameter in the biological regime may be size dependent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宓天问发布了新的文献求助10
刚刚
刚刚
天天快乐应助雅丽采纳,获得10
1秒前
榆术山支子完成签到,获得积分10
2秒前
赘婿应助陈军采纳,获得30
2秒前
Chong发布了新的文献求助10
4秒前
NexusExplorer应助满意黎昕采纳,获得10
4秒前
4秒前
折耳根拌香菜完成签到,获得积分10
5秒前
开心肖肖乐完成签到,获得积分10
5秒前
高大血茗完成签到,获得积分10
5秒前
iNk应助yl采纳,获得20
6秒前
络桵发布了新的文献求助10
6秒前
郭翔发布了新的文献求助10
6秒前
李健应助Shrine采纳,获得10
7秒前
可爱的函函应助calico采纳,获得10
7秒前
笔墨留香发布了新的文献求助10
7秒前
Chillichee应助medlive2020采纳,获得10
9秒前
flyfish完成签到,获得积分10
10秒前
11秒前
李健应助高大血茗采纳,获得10
12秒前
爆米花应助你晖哥采纳,获得10
12秒前
情怀应助17712570999采纳,获得20
14秒前
SciGPT应助冷酷的格尔曼采纳,获得10
14秒前
14秒前
烛天完成签到 ,获得积分10
14秒前
14秒前
15秒前
菲菲发布了新的文献求助10
15秒前
vnb发布了新的文献求助200
16秒前
今后应助momo采纳,获得10
16秒前
17秒前
无花果应助zxy采纳,获得10
17秒前
内向问寒完成签到,获得积分10
18秒前
18秒前
18秒前
笔墨留香完成签到,获得积分10
19秒前
19秒前
禾风完成签到,获得积分10
19秒前
shmily完成签到,获得积分10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975250
求助须知:如何正确求助?哪些是违规求助? 3519625
关于积分的说明 11199055
捐赠科研通 3255962
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877358
科研通“疑难数据库(出版商)”最低求助积分说明 806298