亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep transfer learning for connection defect identification in prefabricated structures

稳健性(进化) 计算机科学 深度学习 卷积神经网络 人工智能 学习迁移 可扩展性 机器学习 结构健康监测 人工神经网络 鉴定(生物学) 背景(考古学) 模式识别(心理学) 工程类 数据库 结构工程 生物 基因 植物 生物化学 古生物学 化学
作者
Hesheng Tang,Yajuan Xie
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:22 (3): 2128-2146 被引量:14
标识
DOI:10.1177/14759217221119537
摘要

Defect and damage identification is a crucial task in structural health monitoring (SHM) systems. Recent advances in deep neural networks (DNNs) show success in identification from data for a wide range of SHM systems. However, this approach faces challenges in terms of robustness and scalability with respect to data scarcity. Data collection for the training of DNNs from both the field and laboratory experiments is costly. To address this issue, we employ transfer learning (TL) through the use of deep convolutional neural networks (CNNs) for defect identification in the context of a sensor network’s vibration data. A deep TL (DTL) paradigm is used herein so that a pretrained CNN, primarily trained for generalized defect identification tasks where sufficient training data exist (source domain), can be re-trained partially (fine-tuned) as a later secondary process that targets this application domain (target domain) specifically. Different DTL cases are compared, and training data are enhanced with numerical simulation data. The efficacy and robustness of this method are demonstrated on defect identification for full-scale prefabricated concrete shear wall structures with different levels of data scarcity. This method utilizes dynamic responses collected using a sensor network. This is an extension of deep learning vision for non-vision tasks. Defect features are extracted from the dataset of dynamic responses using this DTL frame. Experimental results show that this approach can improve identification models on datasets with few samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
chenziyuan完成签到 ,获得积分20
4秒前
5秒前
6秒前
9秒前
光轮2000发布了新的文献求助10
10秒前
土豪的念云完成签到,获得积分10
10秒前
Xuanye发布了新的文献求助10
10秒前
lunar完成签到 ,获得积分10
12秒前
缓慢枕头发布了新的文献求助10
17秒前
19秒前
SciGPT应助油柑美式采纳,获得10
20秒前
24秒前
25秒前
山鬼发布了新的文献求助10
26秒前
26秒前
香蕉觅云应助wang采纳,获得10
28秒前
30秒前
Legend完成签到,获得积分10
30秒前
可爱的函函应助change采纳,获得10
32秒前
35秒前
35秒前
完美的沉鱼完成签到 ,获得积分10
36秒前
知性的剑身完成签到,获得积分10
37秒前
光轮2000发布了新的文献求助10
38秒前
秋作发布了新的文献求助10
40秒前
44秒前
46秒前
科研通AI6应助saywhy采纳,获得30
48秒前
sopha发布了新的文献求助10
51秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
在水一方应助油柑美式采纳,获得10
52秒前
52秒前
franklin_fsz应助科研通管家采纳,获得30
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
52秒前
浮游应助科研通管家采纳,获得10
52秒前
pipi发布了新的文献求助10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498101
求助须知:如何正确求助?哪些是违规求助? 4595469
关于积分的说明 14449140
捐赠科研通 4528169
什么是DOI,文献DOI怎么找? 2481381
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283