Deep transfer learning for connection defect identification in prefabricated structures

稳健性(进化) 计算机科学 深度学习 卷积神经网络 人工智能 学习迁移 可扩展性 机器学习 结构健康监测 人工神经网络 鉴定(生物学) 背景(考古学) 模式识别(心理学) 工程类 数据库 结构工程 生物 基因 植物 生物化学 古生物学 化学
作者
Hesheng Tang,Yajuan Xie
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:22 (3): 2128-2146 被引量:14
标识
DOI:10.1177/14759217221119537
摘要

Defect and damage identification is a crucial task in structural health monitoring (SHM) systems. Recent advances in deep neural networks (DNNs) show success in identification from data for a wide range of SHM systems. However, this approach faces challenges in terms of robustness and scalability with respect to data scarcity. Data collection for the training of DNNs from both the field and laboratory experiments is costly. To address this issue, we employ transfer learning (TL) through the use of deep convolutional neural networks (CNNs) for defect identification in the context of a sensor network’s vibration data. A deep TL (DTL) paradigm is used herein so that a pretrained CNN, primarily trained for generalized defect identification tasks where sufficient training data exist (source domain), can be re-trained partially (fine-tuned) as a later secondary process that targets this application domain (target domain) specifically. Different DTL cases are compared, and training data are enhanced with numerical simulation data. The efficacy and robustness of this method are demonstrated on defect identification for full-scale prefabricated concrete shear wall structures with different levels of data scarcity. This method utilizes dynamic responses collected using a sensor network. This is an extension of deep learning vision for non-vision tasks. Defect features are extracted from the dataset of dynamic responses using this DTL frame. Experimental results show that this approach can improve identification models on datasets with few samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜗牛完成签到,获得积分10
刚刚
wanci应助王泽采纳,获得10
刚刚
JiaqiDijon完成签到,获得积分10
刚刚
syx完成签到,获得积分10
刚刚
艺艺子完成签到,获得积分10
刚刚
aka完成签到,获得积分10
1秒前
1秒前
lzp完成签到 ,获得积分10
1秒前
1秒前
虚荣的泥猴桃完成签到 ,获得积分10
1秒前
tongzhi完成签到 ,获得积分10
2秒前
甜甜醉香发布了新的文献求助10
2秒前
2秒前
2秒前
思源应助嘻嘻采纳,获得10
3秒前
bkagyin应助nmm1111采纳,获得10
3秒前
依克完成签到,获得积分10
3秒前
璐璐完成签到,获得积分10
3秒前
3秒前
干净绮烟完成签到,获得积分10
3秒前
damian完成签到,获得积分10
3秒前
春雨完成签到,获得积分0
4秒前
BareBear应助蜗牛采纳,获得10
4秒前
深情安青应助安静采纳,获得10
4秒前
syx发布了新的文献求助10
4秒前
可颂完成签到,获得积分10
4秒前
xinluli完成签到,获得积分10
5秒前
粗心的飞槐完成签到,获得积分10
5秒前
fanfan完成签到,获得积分10
5秒前
JiaqiDijon发布了新的文献求助10
5秒前
徐小发布了新的文献求助10
5秒前
眯眯眼的士萧完成签到,获得积分10
5秒前
元宝团子完成签到,获得积分10
5秒前
6秒前
不爱喝咖啡完成签到,获得积分10
6秒前
郭倍坚完成签到,获得积分20
6秒前
逍遥给逍遥的求助进行了留言
6秒前
华仔应助bingsu108采纳,获得10
6秒前
mirrovo发布了新的文献求助10
6秒前
caizx完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414070
求助须知:如何正确求助?哪些是违规求助? 4531003
关于积分的说明 14126139
捐赠科研通 4446247
什么是DOI,文献DOI怎么找? 2439384
邀请新用户注册赠送积分活动 1431483
关于科研通互助平台的介绍 1409185