Deep transfer learning for connection defect identification in prefabricated structures

稳健性(进化) 计算机科学 深度学习 卷积神经网络 人工智能 学习迁移 可扩展性 机器学习 结构健康监测 人工神经网络 鉴定(生物学) 背景(考古学) 模式识别(心理学) 工程类 数据库 结构工程 生物 基因 植物 生物化学 古生物学 化学
作者
Hesheng Tang,Yajuan Xie
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (3): 2128-2146 被引量:14
标识
DOI:10.1177/14759217221119537
摘要

Defect and damage identification is a crucial task in structural health monitoring (SHM) systems. Recent advances in deep neural networks (DNNs) show success in identification from data for a wide range of SHM systems. However, this approach faces challenges in terms of robustness and scalability with respect to data scarcity. Data collection for the training of DNNs from both the field and laboratory experiments is costly. To address this issue, we employ transfer learning (TL) through the use of deep convolutional neural networks (CNNs) for defect identification in the context of a sensor network’s vibration data. A deep TL (DTL) paradigm is used herein so that a pretrained CNN, primarily trained for generalized defect identification tasks where sufficient training data exist (source domain), can be re-trained partially (fine-tuned) as a later secondary process that targets this application domain (target domain) specifically. Different DTL cases are compared, and training data are enhanced with numerical simulation data. The efficacy and robustness of this method are demonstrated on defect identification for full-scale prefabricated concrete shear wall structures with different levels of data scarcity. This method utilizes dynamic responses collected using a sensor network. This is an extension of deep learning vision for non-vision tasks. Defect features are extracted from the dataset of dynamic responses using this DTL frame. Experimental results show that this approach can improve identification models on datasets with few samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杨生颠发布了新的文献求助10
1秒前
Aurora完成签到 ,获得积分10
1秒前
疯子不会学完成签到,获得积分10
2秒前
赘婿应助yao采纳,获得10
2秒前
Catalysis123发布了新的文献求助10
2秒前
sansan完成签到,获得积分10
3秒前
3秒前
4秒前
ZTK完成签到,获得积分10
4秒前
浮游应助雨雨采纳,获得10
5秒前
吟賞烟霞完成签到,获得积分10
5秒前
5秒前
愤怒的海白应助i7采纳,获得10
7秒前
zombleq完成签到 ,获得积分10
7秒前
8秒前
CipherSage应助外向的含羞草采纳,获得10
8秒前
8秒前
希希完成签到 ,获得积分10
8秒前
9秒前
KanmenRider完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
superspace完成签到,获得积分10
11秒前
共享精神应助JMrider采纳,获得10
11秒前
文献小松鼠完成签到,获得积分10
11秒前
12秒前
实验耗材完成签到 ,获得积分10
12秒前
简单花花完成签到,获得积分10
12秒前
可靠世平发布了新的文献求助20
12秒前
阔达月亮发布了新的文献求助10
13秒前
13秒前
来了来了完成签到 ,获得积分10
13秒前
哭泣的涵柳完成签到,获得积分10
13秒前
Mint发布了新的文献求助10
13秒前
赵宇宙完成签到,获得积分10
13秒前
哆1627_完成签到,获得积分10
14秒前
123完成签到,获得积分10
14秒前
Bronya发布了新的文献求助10
14秒前
德鲁大叔完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093986
求助须知:如何正确求助?哪些是违规求助? 4307375
关于积分的说明 13419555
捐赠科研通 4133722
什么是DOI,文献DOI怎么找? 2264715
邀请新用户注册赠送积分活动 1268237
关于科研通互助平台的介绍 1204202