Go Closer to See Better: Camouflaged Object Detection via Object Area Amplification and Figure-Ground Conversion

计算机科学 目标检测 分割 水准点(测量) 人工智能 对象(语法) 特征(语言学) 图-地面 计算机视觉 模式识别(心理学) 特征提取 图像分割 感知 地理 语言学 哲学 大地测量学 神经科学 生物
作者
Haozhe Xing,Shuyong Gao,Yan Wang,Xujun Wei,Hao Tang,Wenqiang Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (10): 5444-5457 被引量:27
标识
DOI:10.1109/tcsvt.2023.3255304
摘要

Camouflaged Object Detection (COD) aims to detect objects well hidden in the environment. The main challenges of COD come from the high degree of texture and color overlapping between the objects and their surroundings. Inspired by that humans tend to go closer to the object and magnify it to recognize ambiguous objects more clearly, we propose a novel three-stage architecture called Search-Amplify-Recognize and design a network SARNet to address the challenges. Specifically, In the Search part, we utilize an attention-based backbone to locate the object. In the Amplify part, to obtain rich searched features and fine segmentation, we design Object Area Amplification modules (OAA) to perform cross-level and adjacent-level feature fusion and amplifying operations on feature maps. Besides, the OAA can be regarded as a simple and effective plug-in module to integrate and amplify the feature maps. The main components of the Recognize part are the Figure-Ground Conversion modules (FGC). The FGC modules alternately pay attention to the foreground and background to precisely separate the highly similar foreground and background. Extensive experiments on benchmark datasets show that our model outperforms other SOTA methods not only on COD tasks but also in COD downstream tasks, such as polyp segmentation and video camouflaged object detection. Source codes will be available at https://github.com/Haozhe-Xing/SARNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aceman完成签到,获得积分20
1秒前
1秒前
CAIJING完成签到,获得积分10
3秒前
在水一方应助yefeng采纳,获得10
4秒前
怕黑筝应助积极松鼠采纳,获得10
5秒前
5秒前
善学以致用应助懵懂小尉采纳,获得10
7秒前
8秒前
依琬应助HHY采纳,获得50
9秒前
关山月完成签到,获得积分10
9秒前
Akim应助Kindy采纳,获得10
9秒前
郑同学完成签到,获得积分10
10秒前
cy发布了新的文献求助10
10秒前
11秒前
11秒前
故事的小红花完成签到,获得积分10
12秒前
称心语风发布了新的文献求助10
12秒前
关山月发布了新的文献求助10
14秒前
冷傲的咖啡豆完成签到 ,获得积分10
15秒前
可爱的函函应助席半采纳,获得50
15秒前
16秒前
安静的滑板应助ngz采纳,获得20
17秒前
余南发布了新的文献求助10
18秒前
21秒前
21秒前
cy完成签到,获得积分10
21秒前
22秒前
chem发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
汉堡包应助xiaoyan采纳,获得10
24秒前
NexusExplorer应助满意勒采纳,获得10
25秒前
Lin_发布了新的文献求助10
25秒前
26秒前
26秒前
席半完成签到,获得积分10
28秒前
Dobby发布了新的文献求助10
28秒前
wallonce发布了新的文献求助10
30秒前
kitty完成签到 ,获得积分10
31秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222475
求助须知:如何正确求助?哪些是违规求助? 2871136
关于积分的说明 8173991
捐赠科研通 2538057
什么是DOI,文献DOI怎么找? 1370279
科研通“疑难数据库(出版商)”最低求助积分说明 645753
邀请新用户注册赠送积分活动 619548