Differentiation of acute and chronic vertebral compression fractures using conventional CT based on deep transfer learning features and hand-crafted radiomics features

医学 接收机工作特性 列线图 无线电技术 置信区间 放射科 核医学 人工智能 内科学 计算机科学
作者
Jun Zhang,Jiayi Liu,Zhipeng Liang,Liang Xia,Weixiao Zhang,Yanfen Xing,Xueli Zhang,Guangyu Tang
出处
期刊:BMC Musculoskeletal Disorders [Springer Nature]
卷期号:24 (1) 被引量:11
标识
DOI:10.1186/s12891-023-06281-5
摘要

We evaluated the diagnostic efficacy of deep learning radiomics (DLR) and hand-crafted radiomics (HCR) features in differentiating acute and chronic vertebral compression fractures (VCFs).A total of 365 patients with VCFs were retrospectively analysed based on their computed tomography (CT) scan data. All patients completed MRI examination within 2 weeks. There were 315 acute VCFs and 205 chronic VCFs. Deep transfer learning (DTL) features and HCR features were extracted from CT images of patients with VCFs using DLR and traditional radiomics, respectively, and feature fusion was performed to establish the least absolute shrinkage and selection operator. The MRI display of vertebral bone marrow oedema was used as the gold standard for acute VCF, and the model performance was evaluated using the receiver operating characteristic (ROC).To separately evaluate the effectiveness of DLR, traditional radiomics and feature fusion in the differential diagnosis of acute and chronic VCFs, we constructed a nomogram based on the clinical baseline data to visualize the classification evaluation. The predictive power of each model was compared using the Delong test, and the clinical value of the nomogram was evaluated using decision curve analysis (DCA).Fifty DTL features were obtained from DLR, 41 HCR features were obtained from traditional radiomics, and 77 features fusion were obtained after feature screening and fusion of the two. The area under the curve (AUC) of the DLR model in the training cohort and test cohort were 0.992 (95% confidence interval (CI), 0.983-0.999) and 0.871 (95% CI, 0.805-0.938), respectively. While the AUCs of the conventional radiomics model in the training cohort and test cohort were 0.973 (95% CI, 0.955-0.990) and 0.854 (95% CI, 0.773-0.934), respectively. The AUCs of the features fusion model in the training cohort and test cohort were 0.997 (95% CI, 0.994-0.999) and 0.915 (95% CI, 0.855-0.974), respectively. The AUCs of nomogram constructed by the features fusion in combination with clinical baseline data were 0.998 (95% CI, 0.996-0.999) and 0.946 (95% CI, 0.906-0.987) in the training cohort and test cohort, respectively. The Delong test showed that the differences between the features fusion model and the nomogram in the training cohort and the test cohort were not statistically significant (P values were 0.794 and 0.668, respectively), and the differences in the other prediction models in the training cohort and the test cohort were statistically significant (P < 0.05). DCA showed that the nomogram had high clinical value.The features fusion model can be used for the differential diagnosis of acute and chronic VCFs, and its differential diagnosis ability is improved when compared with that when either radiomics is used alone. At the same time, the nomogram has a high predictive value for acute and chronic VCFs and can be a potential decision-making tool to assist clinicians, especially when a patient is unable to undergo spinal MRI examination.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小孟吖完成签到 ,获得积分10
3秒前
东方欲晓完成签到 ,获得积分0
6秒前
你在教我做事啊完成签到 ,获得积分10
8秒前
长隆完成签到 ,获得积分10
11秒前
无解完成签到,获得积分10
12秒前
小花小宝和阿飞完成签到 ,获得积分10
13秒前
14秒前
大渣饼完成签到 ,获得积分10
15秒前
innocent完成签到,获得积分10
17秒前
龚问萍完成签到 ,获得积分10
19秒前
19秒前
lx完成签到,获得积分10
21秒前
yang完成签到 ,获得积分10
21秒前
啦啦啦啦啦啦完成签到 ,获得积分10
23秒前
JANE完成签到 ,获得积分10
24秒前
rice0601完成签到,获得积分10
26秒前
大力水手完成签到,获得积分10
26秒前
追寻念云完成签到 ,获得积分10
31秒前
小事完成签到 ,获得积分10
31秒前
务实曲奇完成签到,获得积分20
35秒前
violetlishu完成签到 ,获得积分10
36秒前
homer发布了新的文献求助10
37秒前
小糖完成签到 ,获得积分10
37秒前
刘汉淼发布了新的文献求助20
40秒前
hzl完成签到,获得积分10
41秒前
菠萝蜜完成签到,获得积分10
42秒前
skysleeper完成签到,获得积分10
44秒前
tsy完成签到 ,获得积分10
45秒前
wtt完成签到 ,获得积分10
46秒前
万能图书馆应助homer采纳,获得10
49秒前
xkhxh完成签到 ,获得积分10
50秒前
ffyzsl完成签到,获得积分10
50秒前
谢尔顿完成签到,获得积分10
51秒前
爱撒娇的孤丹完成签到 ,获得积分10
52秒前
草莓熊1215完成签到 ,获得积分10
54秒前
ycw7777完成签到,获得积分10
56秒前
搭碰完成签到,获得积分0
57秒前
ruter完成签到,获得积分0
59秒前
马大翔应助科研通管家采纳,获得20
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793757
关于积分的说明 7807197
捐赠科研通 2450021
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350