材料科学
导电体
共晶体系
环境友好型
超分子化学
胶粘剂
导电聚合物
复合材料
纳米技术
聚合物
合金
有机化学
分子
化学
生物
图层(电子)
生态学
作者
Puqing Yao,Qiwen Bao,Yuan Yao,Meng Xiao,Ziyang Xu,Jianhai Yang,Wenguang Liu
标识
DOI:10.1002/adma.202300114
摘要
Abstract It is essential and of great significance to impart high mechanical performance, environmental stability, and high sensitivity to emerging flexible temperature sensors. In this work, polymerizable deep eutectic solvents are designed and prepared by simply mixing N‐cyanomethyl acrylamide (NCMA) containing an amide group and a cyano group in the same side chain with lithium bis(trifluoromethane) sulfonimide (LiTFSI), and obtain supramolecular deep eutectic polyNCMA/LiTFSI gels after polymerization. These supramolecular gels exhibit excellent mechanical performance (tensile strength of 12.9 MPa and fracture energy of 45.3 kJ m −2 ), strong adhesion force, high‐temperature responsiveness, self‐healing ability, and shape memory behavior due to the reversible reconstruction ability of amide hydrogen bonds and cyano‐cyano dipole‐dipole interactions in the gel network. In addition, the gels also demonstrate good environmental stability and 3D printability. To verify its application potential as a flexible temperature sensor, the polyNCMA/LiTFSI gel‐based wireless temperature monitor is developed and displays outstanding thermal sensitivity (8.4%/K) over a wide detection range. The preliminary result also suggests the promising potential of PNCMA gel as a pressure sensor.
科研通智能强力驱动
Strongly Powered by AbleSci AI