TSMixer: An All-MLP Architecture for Time Series Forecasting

计算机科学 杠杆(统计) 单变量 机器学习 人工智能 深度学习 可扩展性 水准点(测量) 特征工程 感知器 时间序列 建筑 系列(地层学) 数据挖掘 人工神经网络 多元统计 艺术 古生物学 大地测量学 数据库 视觉艺术 生物 地理
作者
Sian Chen,Chun‐Liang Li,Nathanael C. Yoder,Sercan Ö. Arık,Tomas Pfister
出处
期刊:Cornell University - arXiv 被引量:29
标识
DOI:10.48550/arxiv.2303.06053
摘要

Real-world time-series datasets are often multivariate with complex dynamics. To capture this complexity, high capacity architectures like recurrent- or attention-based sequential deep learning models have become popular. However, recent work demonstrates that simple univariate linear models can outperform such deep learning models on several commonly used academic benchmarks. Extending them, in this paper, we investigate the capabilities of linear models for time-series forecasting and present Time-Series Mixer (TSMixer), a novel architecture designed by stacking multi-layer perceptrons (MLPs). TSMixer is based on mixing operations along both the time and feature dimensions to extract information efficiently. On popular academic benchmarks, the simple-to-implement TSMixer is comparable to specialized state-of-the-art models that leverage the inductive biases of specific benchmarks. On the challenging and large scale M5 benchmark, a real-world retail dataset, TSMixer demonstrates superior performance compared to the state-of-the-art alternatives. Our results underline the importance of efficiently utilizing cross-variate and auxiliary information for improving the performance of time series forecasting. We present various analyses to shed light into the capabilities of TSMixer. The design paradigms utilized in TSMixer are expected to open new horizons for deep learning-based time series forecasting. The implementation is available at https://github.com/google-research/google-research/tree/master/tsmixer
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
000完成签到,获得积分10
6秒前
7秒前
7秒前
zzl1111完成签到,获得积分10
7秒前
NexusExplorer应助Skyler666采纳,获得10
7秒前
lingck发布了新的文献求助10
7秒前
隐形曼青应助carly采纳,获得20
11秒前
000发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
佳语妍说完成签到,获得积分10
13秒前
情怀应助洁净的静芙采纳,获得10
15秒前
16秒前
超级的鹅发布了新的文献求助80
16秒前
务实源智发布了新的文献求助30
16秒前
16秒前
zzz完成签到,获得积分20
17秒前
18秒前
19秒前
SHJ发布了新的文献求助10
21秒前
Atom完成签到,获得积分10
21秒前
深情安青应助zzz采纳,获得10
22秒前
22秒前
杜熙凤发布了新的文献求助10
24秒前
SunHY发布了新的文献求助10
24秒前
SHJ完成签到,获得积分20
29秒前
SunHY完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助150
30秒前
30秒前
33秒前
樊书雪完成签到,获得积分10
33秒前
insist完成签到 ,获得积分10
34秒前
我呜呜呜呜完成签到,获得积分10
34秒前
TheBugsss完成签到,获得积分10
34秒前
盼盼完成签到,获得积分10
36秒前
36秒前
Orange应助罗中翠采纳,获得10
36秒前
脑洞疼应助坚定岂愈采纳,获得10
36秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167