FCN-Attention: A deep learning UWB NLOS/LOS classification algorithm using fully convolution neural network with self-attention mechanism

非视线传播 测距 计算机科学 人工智能 卷积(计算机科学) 特征提取 特征(语言学) 深度学习 模式识别(心理学) 人工神经网络 算法 机器学习 数据挖掘 无线 电信 语言学 哲学
作者
Yu Pei,Ruizhi Chen,Deren Li,Xiongwu Xiao,Xingyu Zheng
出处
期刊:Geo-spatial Information Science [Taylor & Francis]
卷期号:27 (4): 1162-1181 被引量:19
标识
DOI:10.1080/10095020.2023.2178334
摘要

The Ultra-Wideband (UWB) Location-Based Service is receiving more and more attention due to its high ranging accuracy and good time resolution. However, the None-Line-of-Sight (NLOS) propagation may reduce the ranging accuracy for UWB localization system in indoor environment. So it is important to identify LOS and NLOS propagations before taking proper measures to improve the UWB localization accuracy. In this paper, a deep learning-based UWB NLOS/LOS classification algorithm called FCN-Attention is proposed. The proposed FCN-Attention algorithm utilizes a Fully Convolution Network (FCN) for improving feature extraction ability and a self-attention mechanism for enhancing feature description from the data to improve the classification accuracy. The proposed algorithm is evaluated using an open-source dataset, a local collected dataset and a mixed dataset created from these two datasets. The experiment result shows that the proposed FCN-Attention algorithm achieves classification accuracy of 88.24% on the open-source dataset, 100% on the local collected dataset and 92.01% on the mixed dataset, which is better than the results from other evaluated NLOS/LOS classification algorithms in most scenarios in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助limz采纳,获得10
3秒前
3秒前
鳗鱼蹇完成签到,获得积分10
4秒前
aaaaa完成签到,获得积分10
5秒前
5秒前
明亮访烟完成签到 ,获得积分10
5秒前
fle完成签到,获得积分10
6秒前
陈陈完成签到 ,获得积分10
6秒前
充电宝应助复杂的鸿煊采纳,获得10
6秒前
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得30
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
9秒前
所所应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得30
9秒前
9秒前
Singularity应助科研通管家采纳,获得10
9秒前
小萝莉发布了新的文献求助10
10秒前
11秒前
shinn发布了新的文献求助10
11秒前
13秒前
Rondab应助777777777采纳,获得10
14秒前
aaaaaa完成签到,获得积分10
14秒前
14秒前
14秒前
jeff发布了新的文献求助10
15秒前
崔洪瑞完成签到,获得积分10
16秒前
文章必发完成签到,获得积分20
16秒前
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303