Early apple bruise recognition based on near-infrared imaging and grayscale gradient images

瘀伤 灰度 人工智能 计算机视觉 计算机科学 像素 模式识别(心理学) 医学 外科
作者
Zengrong Yang,Yuhui Yuan,Jianhua Zheng,Huaibin Wang,Junhui Li,Longlian Zhao
出处
期刊:Journal of Food Measurement and Characterization [Springer Nature]
卷期号:17 (3): 2841-2849
标识
DOI:10.1007/s11694-023-01815-w
摘要

Early apple bruises, especially those occurring within half an hour, usually have no external symptoms and are difficult to recognize. This study developed a fast and nondestructive detection method for early bruises based on near-infrared camera imaging and image recognition. A total of 31 apple samples were photographed on both sides of each apple. Grayscale images of the sound apples were captured using a near-infrared camera with a wavelength region between 900 and 2350 nm. Images (n = 62) of apples without bruises were collected. The identical apples were artificially damaged and photographed at two stages (0 h, 0.5 h) by the near-infrared camera, and a total of 186 grayscale images were collected. As the light spot on the surface of apples limits the accuracy in detecting defects, a compound image pre-processing method was proposed consisting of nonlinear grayscale transformation and frequency-domain image filtering techniques. Finally, the gradient image is obtained by taking the first-order derivative of the preprocessed image. Since bruise had distinct edges, the gradient grayscale images of apples are more favorable for bruise identification. The compound method obtained a 97.62% classification accuracy for nonbruised apples and apples with fresh bruises. The experimental results show that it is feasible to identify early bruises in apples based on near-infrared camera imaging and gradient grayscale images. In the subsequent study, the method will be further improved, especially the parameters involved in the algorithm could be adjusted to adaptive variables. In addition, the system will be explored to be suitable for online apple bruise detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一分发布了新的文献求助10
刚刚
yunnguw完成签到,获得积分20
1秒前
1秒前
passion完成签到,获得积分10
3秒前
4秒前
4秒前
所所应助月落杉松晚采纳,获得10
4秒前
jiujieweizi完成签到 ,获得积分10
5秒前
仲乔妹完成签到,获得积分10
6秒前
6秒前
FashionBoy应助wd采纳,获得10
7秒前
9秒前
斯文败类应助踏实的元彤采纳,获得10
10秒前
桐桐应助Yoke采纳,获得10
13秒前
15秒前
学业顺利发布了新的文献求助10
15秒前
yolo发布了新的文献求助10
16秒前
17秒前
欢乐的零完成签到,获得积分20
17秒前
21秒前
猪猪hero应助学业顺利采纳,获得10
23秒前
Ayanami完成签到,获得积分10
23秒前
24秒前
24秒前
柯擎汉完成签到,获得积分10
24秒前
Lucas应助书意阑珊采纳,获得10
24秒前
25秒前
劲秉应助优雅的依瑶采纳,获得10
27秒前
27秒前
27秒前
dywen完成签到,获得积分10
28秒前
好好好1234发布了新的文献求助10
28秒前
FashionBoy应助yolo采纳,获得10
28秒前
shencheng发布了新的文献求助10
29秒前
小刘发布了新的文献求助10
29秒前
NexusExplorer应助Hahawang采纳,获得30
29秒前
30秒前
30秒前
30秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464898
求助须知:如何正确求助?哪些是违规求助? 3058272
关于积分的说明 9060709
捐赠科研通 2748547
什么是DOI,文献DOI怎么找? 1507925
科研通“疑难数据库(出版商)”最低求助积分说明 696748
邀请新用户注册赠送积分活动 696415