已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A difference attention ResNet-LSTM network for epileptic seizure detection using EEG signal

计算机科学 癫痫 癫痫发作 卷积神经网络 深度学习 脑电图 人工智能 残差神经网络 特征(语言学) 模式识别(心理学) 人工神经网络 光学(聚焦) 残余物 心理学 神经科学 算法 语言学 哲学 物理 光学
作者
Xuanjie Qiu,Fang Yan,Haihong Liu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:83: 104652-104652 被引量:76
标识
DOI:10.1016/j.bspc.2023.104652
摘要

Epileptic seizures can affect the patient's physical function and cause irreversible damage to their brain. It is vital to detect epilepsy seizures in time and give patients antiepileptic medical treatment. Hybrid deep learning models, which combine convolutional neural network and recurrent neural network, have better epileptic seizure detection performance as they could simultaneously extract spatial and temporal features. However, the existing hybrid deep learning models still have the following two weaknesses. Firstly, they directly input the raw electroencephalogram signals, where the epilepsy seizure information is limited. Secondly, some characteristic information is extracted in the feature map, distracting the attention of deep learning model. To address these issues, this paper proposes a difference attention ResNet-LSTM network (DARLNet). The proposed model uses a residual neural network (ResNet) and a long short-term memory network (LSTM) to capture spatial correlations and temporal dependencies, respectively. Besides, a difference layer is developed to automatically mine additional epileptic seizure information. Moreover, the channel attention module is introduced to make the model focus on seizure-relevant information. Several groups of experiments are conducted to evaluate the performance of DARLNet based on the Bonn Electroencephalogram dataset, which verifies the superiority of DARLNet on the two-category and five-category epileptic seizure detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Ma完成签到,获得积分10
2秒前
xinxin发布了新的文献求助20
3秒前
duwurong完成签到,获得积分10
3秒前
3秒前
4秒前
玉玉鼠发布了新的文献求助10
5秒前
5秒前
善学以致用应助atmzpl采纳,获得10
6秒前
慕青应助wjx采纳,获得10
6秒前
6秒前
6秒前
YZC完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
深情安青应助哈哈采纳,获得10
7秒前
Ma发布了新的文献求助10
9秒前
大龙哥886应助魏艳秋采纳,获得10
10秒前
10秒前
sxx发布了新的文献求助10
10秒前
11秒前
12秒前
Paranoid发布了新的文献求助10
12秒前
14秒前
正己化人应助LALA采纳,获得10
14秒前
14秒前
15秒前
15秒前
xxfsx应助敏感的翠容采纳,获得10
15秒前
16秒前
Owen应助zhanghezheng采纳,获得10
17秒前
18秒前
明月清风发布了新的文献求助30
18秒前
21秒前
王一完成签到 ,获得积分10
22秒前
嘟嘟完成签到,获得积分10
22秒前
小蘑菇应助白白采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407145
求助须知:如何正确求助?哪些是违规求助? 4524806
关于积分的说明 14100192
捐赠科研通 4438630
什么是DOI,文献DOI怎么找? 2436417
邀请新用户注册赠送积分活动 1428409
关于科研通互助平台的介绍 1406443