A difference attention ResNet-LSTM network for epileptic seizure detection using EEG signal

计算机科学 癫痫 癫痫发作 卷积神经网络 深度学习 脑电图 人工智能 残差神经网络 特征(语言学) 模式识别(心理学) 人工神经网络 光学(聚焦) 残余物 心理学 神经科学 算法 语言学 哲学 物理 光学
作者
Xuanjie Qiu,Fang Yan,Haihong Liu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:83: 104652-104652 被引量:42
标识
DOI:10.1016/j.bspc.2023.104652
摘要

Epileptic seizures can affect the patient's physical function and cause irreversible damage to their brain. It is vital to detect epilepsy seizures in time and give patients antiepileptic medical treatment. Hybrid deep learning models, which combine convolutional neural network and recurrent neural network, have better epileptic seizure detection performance as they could simultaneously extract spatial and temporal features. However, the existing hybrid deep learning models still have the following two weaknesses. Firstly, they directly input the raw electroencephalogram signals, where the epilepsy seizure information is limited. Secondly, some characteristic information is extracted in the feature map, distracting the attention of deep learning model. To address these issues, this paper proposes a difference attention ResNet-LSTM network (DARLNet). The proposed model uses a residual neural network (ResNet) and a long short-term memory network (LSTM) to capture spatial correlations and temporal dependencies, respectively. Besides, a difference layer is developed to automatically mine additional epileptic seizure information. Moreover, the channel attention module is introduced to make the model focus on seizure-relevant information. Several groups of experiments are conducted to evaluate the performance of DARLNet based on the Bonn Electroencephalogram dataset, which verifies the superiority of DARLNet on the two-category and five-category epileptic seizure detection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助现实马里奥采纳,获得20
4秒前
北辰发布了新的文献求助30
4秒前
GGZ发布了新的文献求助10
6秒前
卢国强完成签到 ,获得积分10
6秒前
7秒前
李爱国应助vivi采纳,获得10
7秒前
SoniaChan发布了新的文献求助10
7秒前
10秒前
10秒前
11秒前
11秒前
舒心莫言完成签到,获得积分10
11秒前
mzrrong发布了新的文献求助10
12秒前
13秒前
nmr发布了新的文献求助10
14秒前
qqq发布了新的文献求助10
14秒前
龙飞凤舞完成签到,获得积分10
16秒前
16秒前
迅速思萱完成签到,获得积分10
17秒前
17秒前
18秒前
lyh发布了新的文献求助10
18秒前
18秒前
19秒前
龙飞凤舞完成签到,获得积分10
20秒前
qqq完成签到,获得积分10
21秒前
wang完成签到,获得积分20
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233489
求助须知:如何正确求助?哪些是违规求助? 2880104
关于积分的说明 8213669
捐赠科研通 2547469
什么是DOI,文献DOI怎么找? 1376998
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154