Early Cancer Biomarker Discovery Using DIA-MS Proteomic Analysis of EVs from Peripheral Blood

生物标志物发现 蛋白质组 细胞外小泡 液体活检 背景(考古学) 癌症生物标志物 质谱法 蛋白质组学 生物标志物 化学 胞外囊泡 色谱法 癌症 计算生物学 医学 微泡 生物 生物化学 内科学 古生物学 小RNA 基因 细胞生物学
作者
Camila Espejo,Bruce Lyons,Gregory M. Woods,Richard Wilson
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 127-152
标识
DOI:10.1007/978-1-0716-2978-9_9
摘要

One of the cornerstones of effective cancer treatment is early diagnosis. In this context, the identification of proteins that can serve as cancer biomarkers in bodily fluids ("liquid biopsies") has gained attention over the last decade. Plasma and serum fractions of blood are the most commonly investigated sources of potential cancer liquid biopsy biomarkers. However, the high complexity and dynamic range typical of these fluids hinders the sensitivity of protein detection by the most commonly used mass spectrometry technology (data-dependent acquisition mass spectrometry (DDA-MS)). Recently, data-independent acquisition mass spectrometry (DIA-MS) techniques have overcome the limitations of DDA-MS, increasing sensitivity and proteome coverage. In addition to DIA-MS, isolating extracellular vesicles (EVs) can help to increase the depth of serum/plasma proteome coverage by improving the identification of low-abundance proteins which are a potential treasure trove of diagnostic molecules. EVs, the nano-sized membrane-enclosed vesicles present in most bodily fluids, contain proteins which may serve as potential biomarkers for various cancers. Here, we describe a detailed protocol that combines DIA-MS and EV methodologies for discovering and validating early cancer biomarkers using blood serum. The pipeline includes size exclusion chromatography methods to isolate serum-derived extracellular vesicles and subsequent EV sample preparation for liquid chromatography and mass spectrometry analysis. Procedures for spectral library generation by DDA-MS incorporate methods for off-line peptide separation by microflow HPLC with automated fraction concatenation. Analysis of the samples by DIA-MS includes recommended protocols for data processing and statistical methods. This pipeline will provide a guide to discovering and validating EV-associated proteins that can serve as sensitive and specific biomarkers for early cancer detection and other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无脚鸟完成签到,获得积分10
刚刚
GreenT完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Gilana完成签到,获得积分10
1秒前
简单花花完成签到,获得积分10
1秒前
橙果果完成签到,获得积分10
2秒前
2秒前
2秒前
唠叨的映真完成签到,获得积分10
3秒前
灵巧若剑完成签到,获得积分10
3秒前
3秒前
缥缈冰珍完成签到,获得积分20
3秒前
4秒前
4秒前
无限飞烟完成签到,获得积分10
4秒前
Lionking完成签到,获得积分10
4秒前
Whassupww完成签到,获得积分10
4秒前
ypp完成签到,获得积分10
4秒前
zhui完成签到,获得积分10
5秒前
5秒前
毛毛妈完成签到,获得积分10
6秒前
云朵完成签到,获得积分10
6秒前
7秒前
8秒前
科研通AI5应助于123456789采纳,获得10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
虚心醉蝶完成签到 ,获得积分10
10秒前
WJane完成签到,获得积分10
10秒前
11秒前
一叶扁舟完成签到,获得积分10
11秒前
12秒前
lt2完成签到,获得积分10
12秒前
任性雪糕完成签到 ,获得积分10
13秒前
13秒前
阔达水之完成签到,获得积分10
13秒前
答辩科学家完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661303
求助须知:如何正确求助?哪些是违规求助? 3222367
关于积分的说明 9745047
捐赠科研通 2931980
什么是DOI,文献DOI怎么找? 1605350
邀请新用户注册赠送积分活动 757854
科研通“疑难数据库(出版商)”最低求助积分说明 734569