Abstract 132: Clot Radiomics Features From Ct Imaging Predict Treatment Outcomes From Stroke Thrombectomy

医学 血运重建 冲程(发动机) 放射科 单变量 血管造影 心脏病学 核医学 多元统计 机器学习 机械工程 心肌梗塞 工程类 计算机科学
作者
Tatsat R. Patel,André Monteiro,Muhammad Waqas,Adnan H. Siddiqui,Vincent M. Tutino
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:54 (Suppl_1)
标识
DOI:10.1161/str.54.suppl_1.132
摘要

Background: Radiomics features (RFs) extracted from CT images have the potential to provide valuable biological and structural information about ischemic stroke blood clots, which may inform mechanical thrombectomy (MT) outcome. Hypothesis: We aimed to identify RFs that predict MT outcome and interpret these findings using paired histological data. Methods: We extracted 293 RFs from co-registered non-contrast CT (nCCT) and CT angiography (CTA) images. RFs predictive of revascularization outcome (defined by first pass effect [FPE], which is near complete removal of occlusive clot in one pass of MT) were selected. We then trained and cross-validated (5-fold) a balanced logistic regression model to assess the RFs’ ability in FPE prediction. In a subset of cases, we performed digital histology on clots retrieved during MT. We computed 227 engineered clot histomic features from whole slide histopathology that represented clot structure and texture. Results: Following univariate feature selection and multi-variate feature ranking, we identified 6 RFs significantly associated with FPE (Figure, top rows). Continuity in lower pixel intensities, scattered higher intensities, and intensities with abrupt changes in texture were associated with successful revascularization outcome. The multi-variate model trained using the 6 RFs could predict FPE well, with AUC=0.832±0.031 and accuracy=0.760±0.059 in training and AUC=0.787±0.115 and accuracy=0.787±0.127 in cross-validation. Each of the 6 RFs were related to clot component organization in terms of red blood cell (RBC) and fibrin/platelet (FP) distribution. Clots with more diversity of components and with varying sizes of RBC and FP regions in the clot section were positively associated with RFs predictive of FPE. Conclusion: Clot RFs are potential structurally- and biologically-interpretable candidate biomarkers for accurate FPE prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助猪猪hero采纳,获得10
刚刚
励志小薛发布了新的文献求助10
1秒前
怕孤独的从雪完成签到,获得积分20
1秒前
1秒前
joyce完成签到,获得积分10
1秒前
2秒前
xiaotian_fan发布了新的文献求助10
3秒前
sunlihao完成签到,获得积分10
3秒前
123发布了新的文献求助10
4秒前
悦耳水之发布了新的文献求助10
4秒前
garyaa发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
6秒前
研友_LMNjkn完成签到,获得积分10
8秒前
Liu完成签到,获得积分10
8秒前
8秒前
夏日天空完成签到,获得积分10
9秒前
CodeCraft应助lkc采纳,获得10
9秒前
cheng发布了新的文献求助10
9秒前
Hello应助科研小白菜采纳,获得10
10秒前
Eve发布了新的文献求助10
10秒前
花见月开完成签到,获得积分10
11秒前
思源应助uu采纳,获得10
11秒前
共享精神应助喜悦成威采纳,获得20
12秒前
赵赵赵发布了新的文献求助10
12秒前
打打应助特兰克斯采纳,获得10
13秒前
13秒前
xtqgyy完成签到,获得积分10
13秒前
游尘完成签到 ,获得积分10
13秒前
14秒前
HJJHJH发布了新的文献求助10
15秒前
16秒前
Orange应助拉长的忆南采纳,获得30
16秒前
17秒前
一一发布了新的文献求助10
17秒前
悦耳水之完成签到,获得积分10
19秒前
19秒前
ding应助灵巧荆采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794