Severity-Based Hierarchical ECG Classification Using Neural Networks

计算机科学 可穿戴计算机 可扩展性 心跳 高效能源利用 人工神经网络 能源消耗 电阻随机存取存储器 人工智能 可穿戴技术 网络拓扑 机器学习 嵌入式系统 计算机网络 工程类 数据库 电气工程 电压
作者
Sumit Diware,S. Dash,Anteneh Gebregiorgis,Rajiv Joshi,Christos Strydis,Said Hamdioui,Rajendra Bishnoi
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:17 (1): 77-91 被引量:6
标识
DOI:10.1109/tbcas.2023.3242683
摘要

Timely detection of cardiac arrhythmia characterized by abnormal heartbeats can help in the early diagnosis and treatment of cardiovascular diseases. Wearable healthcare devices typically use neural networks to provide the most convenient way of continuously monitoring heart activity for arrhythmia detection. However, it is challenging to achieve high accuracy and energy efficiency in these smart wearable healthcare devices. In this work, we provide architecture-level solutions to deploy neural networks for cardiac arrhythmia classification. We have created a hierarchical structure after analyzing various neural network topologies where only required network components are activated to improve energy efficiency while maintaining high accuracy. In our proposed architecture, we introduce a severity-based classification approach to directly help the users of the wearable healthcare device as well as the medical professionals. Additionally, we have employed computation-in-memory based hardware to improve energy efficiency and area consumption by leveraging in-situ data processing and scalability of emerging memory technologies such as resistive random access memory (RRAM). Simulation experiments conducted using the MIT-BIH arrhythmia dataset show that the proposed architecture provides high accuracy while consuming average energy of 0.11 $\mu$ J per heartbeat classification and 0.11 mm 2 area, thereby achieving 25× improvement in average energy consumption and 12× improvement in area compared to the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助czq采纳,获得30
刚刚
1秒前
1秒前
1秒前
坦率的松完成签到,获得积分10
1秒前
传奇3应助贤惠的正豪采纳,获得10
2秒前
111发布了新的文献求助10
2秒前
三寒鸦完成签到,获得积分10
2秒前
小木棉发布了新的文献求助10
2秒前
2秒前
少年郎完成签到,获得积分20
3秒前
CipherSage应助123lura采纳,获得10
3秒前
七七完成签到,获得积分10
3秒前
科研通AI2S应助小余采纳,获得10
3秒前
苹果骑士完成签到,获得积分10
3秒前
3秒前
shi hui应助jbhb采纳,获得10
4秒前
4秒前
4秒前
JUSTs0so发布了新的文献求助10
4秒前
长夜变清早完成签到,获得积分10
5秒前
6秒前
6秒前
otaro发布了新的文献求助10
7秒前
yinbin完成签到,获得积分10
7秒前
7秒前
独木舟发布了新的文献求助10
7秒前
白衣未央发布了新的文献求助10
7秒前
脑洞疼应助现实的曼荷采纳,获得10
9秒前
9秒前
轩辕德地发布了新的文献求助10
9秒前
三九完成签到,获得积分10
10秒前
orixero应助少年郎采纳,获得10
10秒前
三金发布了新的文献求助10
10秒前
kuku发布了新的文献求助10
10秒前
土豆你个西红柿完成签到 ,获得积分10
11秒前
小余完成签到,获得积分10
11秒前
12秒前
sherry完成签到 ,获得积分10
12秒前
搜集达人应助陈佳琪采纳,获得30
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762