Severity-Based Hierarchical ECG Classification Using Neural Networks

计算机科学 可穿戴计算机 可扩展性 心跳 高效能源利用 人工神经网络 能源消耗 电阻随机存取存储器 人工智能 可穿戴技术 网络拓扑 机器学习 嵌入式系统 计算机网络 工程类 数据库 电气工程 电压
作者
Sumit Diware,S. Dash,Anteneh Gebregiorgis,Rajiv Joshi,Christos Strydis,Said Hamdioui,Rajendra Bishnoi
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:17 (1): 77-91 被引量:6
标识
DOI:10.1109/tbcas.2023.3242683
摘要

Timely detection of cardiac arrhythmia characterized by abnormal heartbeats can help in the early diagnosis and treatment of cardiovascular diseases. Wearable healthcare devices typically use neural networks to provide the most convenient way of continuously monitoring heart activity for arrhythmia detection. However, it is challenging to achieve high accuracy and energy efficiency in these smart wearable healthcare devices. In this work, we provide architecture-level solutions to deploy neural networks for cardiac arrhythmia classification. We have created a hierarchical structure after analyzing various neural network topologies where only required network components are activated to improve energy efficiency while maintaining high accuracy. In our proposed architecture, we introduce a severity-based classification approach to directly help the users of the wearable healthcare device as well as the medical professionals. Additionally, we have employed computation-in-memory based hardware to improve energy efficiency and area consumption by leveraging in-situ data processing and scalability of emerging memory technologies such as resistive random access memory (RRAM). Simulation experiments conducted using the MIT-BIH arrhythmia dataset show that the proposed architecture provides high accuracy while consuming average energy of 0.11 $\mu$ J per heartbeat classification and 0.11 mm 2 area, thereby achieving 25× improvement in average energy consumption and 12× improvement in area compared to the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjx关闭了wjx文献求助
刚刚
烽烽烽完成签到,获得积分10
刚刚
Esten发布了新的文献求助10
刚刚
1223发布了新的文献求助20
刚刚
刚刚
2秒前
YOLO发布了新的文献求助10
2秒前
ding应助咩咩羊采纳,获得10
2秒前
Friday关注了科研通微信公众号
2秒前
量子星尘发布了新的文献求助150
3秒前
3秒前
越战越勇发布了新的文献求助10
3秒前
帮帮完成签到,获得积分10
3秒前
七秒发布了新的文献求助30
4秒前
XXH完成签到 ,获得积分10
4秒前
科研通AI5应助daqing1725采纳,获得30
4秒前
卢星彤完成签到,获得积分10
4秒前
遛狗儿完成签到 ,获得积分10
5秒前
葛辉辉发布了新的文献求助20
5秒前
5秒前
yolo完成签到,获得积分10
5秒前
5秒前
5秒前
细腻老四发布了新的文献求助10
6秒前
6秒前
6秒前
赛特新思发布了新的文献求助50
7秒前
蛙蛙完成签到 ,获得积分10
7秒前
8秒前
无私的梦凡完成签到,获得积分10
9秒前
9秒前
当当发布了新的文献求助10
9秒前
学问完成签到,获得积分10
9秒前
浮游应助zhx采纳,获得10
10秒前
10秒前
10秒前
10秒前
wr0112完成签到,获得积分10
11秒前
Esten完成签到,获得积分10
11秒前
铲子完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069021
求助须知:如何正确求助?哪些是违规求助? 4290502
关于积分的说明 13367811
捐赠科研通 4110451
什么是DOI,文献DOI怎么找? 2250993
邀请新用户注册赠送积分活动 1256182
关于科研通互助平台的介绍 1188650