InSAR time-series analysis and susceptibility mapping for land subsidence in Semarang, Indonesia using convolutional neural network and support vector regression

支持向量机 卷积神经网络 计算机科学 下沉 遥感 算法 干涉测量 人工智能 地质学 地貌学 天文 构造盆地 物理
作者
Wahyu Luqmanul Hakim,Muhammad Fulki Fadhillah,Sungjae Park,Biswajeet Pradhan,Joong‐Sun Won,Chang-Wook Lee
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:287: 113453-113453 被引量:31
标识
DOI:10.1016/j.rse.2023.113453
摘要

Global sea-level rise due to climate change is a critical problem for coastal cities. One of the coastal cities in Indonesia, Semarang, is in danger of being submerged by seawater due to flooding, which is exacerbated by land subsidence. Time-series analysis based on persistent scatterer (PS) interferometry usually suffers from sparse measurement points (MP), and thus does not completely cover the study area with low coherence. In this study, we utilized improved combined scatterers interferometry with optimized point scatterers (ICOPS) to increase the MP density. We also compared the optimization of the ICOPS method based on support vector regression (SVR) with convolutional neural network (CNN) algorithms. The ICOPS-CNN showed better model performance and MP density, and was less time-consuming. Further land subsidence analysis was conducted in Semarang using susceptibility mapping. The land subsidence susceptibility map from the standalone deep learning (DL) algorithm (CNN = 0.833) outperformed the standalone machine learning (ML) algorithm (SVR = 0.820). The hybrid DL algorithm with grey wolf optimizer (GWO) (CNN-GWO = 0.907) exhibited the highest accuracy, followed by the hybrid ML algorithm (SVR-GWO = 0.843). The accuracy was consistent with the comparison between the susceptibility maps and the ICOPS measurements, resulting in a susceptibility map based on CNN-GWO with the highest accuracy (0.889). Land subsidence monitoring using ICOPS based on CNN and susceptibility mapping based on a hybrid DL algorithm (CNN-GWO) can be used by local governments to improve urban development planning in Semarang and its surrounding areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nuannuan发布了新的文献求助10
刚刚
舒心的幻天完成签到,获得积分10
2秒前
2秒前
酷波er应助Erislastem采纳,获得10
2秒前
YYF完成签到,获得积分10
2秒前
Lucas应助yang采纳,获得10
3秒前
张清璇发布了新的文献求助10
4秒前
4秒前
居居子完成签到,获得积分10
4秒前
Mason发布了新的文献求助10
6秒前
6秒前
7秒前
mmd完成签到 ,获得积分10
8秒前
9秒前
9秒前
善学以致用应助卷卷516采纳,获得10
10秒前
ding应助冷酷丹翠采纳,获得10
11秒前
zhuyimin913发布了新的文献求助10
11秒前
瘦瘦冰枫发布了新的文献求助10
11秒前
DDX完成签到 ,获得积分10
11秒前
liyiying完成签到,获得积分20
13秒前
一吨好运发布了新的文献求助10
13秒前
所所应助XLX采纳,获得10
13秒前
13秒前
~~发布了新的文献求助10
14秒前
Mason完成签到,获得积分10
14秒前
jimmyhui完成签到,获得积分10
16秒前
顾矜应助Rui采纳,获得10
16秒前
kingmin完成签到,获得积分10
17秒前
Ava应助guangshuang采纳,获得10
20秒前
hjlhjl完成签到,获得积分20
20秒前
20秒前
shjyang完成签到,获得积分0
20秒前
虚幻的酒窝完成签到,获得积分10
23秒前
lily发布了新的文献求助10
23秒前
hjlhjl发布了新的文献求助20
23秒前
estella完成签到,获得积分10
23秒前
oyly完成签到 ,获得积分10
24秒前
Jasper应助喜悦乾采纳,获得10
25秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455082
求助须知:如何正确求助?哪些是违规求助? 3050350
关于积分的说明 9021081
捐赠科研通 2738991
什么是DOI,文献DOI怎么找? 1502390
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693216