数学
人工神经网络
压缩性
正交(天文学)
残余物
偏微分方程
微分方程
双曲型偏微分方程
应用数学
误差分析
数学分析
算法
计算机科学
人工智能
物理
光学
热力学
作者
Tim De Ryck,Ameya D. Jagtap,Siddhartha Mishra
标识
DOI:10.1093/imanum/drac085
摘要
Abstract We prove rigorous bounds on the errors resulting from the approximation of the incompressible Navier–Stokes equations with (extended) physics-informed neural networks. We show that the underlying partial differential equation residual can be made arbitrarily small for tanh neural networks with two hidden layers. Moreover, the total error can be estimated in terms of the training error, network size and number of quadrature points. The theory is illustrated with numerical experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI