计算机科学
分割
管道(软件)
掷骰子
人工智能
Sørensen–骰子系数
插值(计算机图形学)
过程(计算)
相似性(几何)
图像分割
模式识别(心理学)
公制(单位)
计算机视觉
图像(数学)
统计
数学
运营管理
经济
程序设计语言
操作系统
作者
Shoujin Huang,Lifeng Mei,Jingyu Li,Ziran Chen,Yue Zhang,Tan Zhang,Xin Nie,Kairen Deng,Mengye Lyu
标识
DOI:10.1007/978-3-031-23911-3_3
摘要
Abdominal CT organ segmentation is known to be challenging. The segmentation of multiple abdominal organs enables quantitative analysis of different organs, providing invaluable input for computer-aided diagnosis (CAD) systems. Based on nnUNet, we develop an abdominal organ segmentation method applicable to both abdominal CT and whole-body CT data. The proposed new training pipeline combines the Kullback-Leibler semi-supervised learning and fully supervised learning, and employs a coarse to fine strategy and GPU accelerated interpolation. Our method achieves a mean Dice Similarity Coefficient (DSC) of 0.873/0.870 and a Normalized Surface Dice (NSD) of 0.911/0.915 on the FLARE 2022 validation/test dataset, with an average process time of 12.27 s per case. Overall, we ranked the fifth place in the FLARE 2022 Challenge. The code is available at https://github.com/Solor-pikachu/Infer-MedSeg-With-Low-Resource .
科研通智能强力驱动
Strongly Powered by AbleSci AI