CSCIM_FS: Cosine similarity coefficient and information measurement criterion-based feature selection method for high-dimensional data

特征选择 模式识别(心理学) 特征(语言学) 余弦相似度 相似性(几何) 系数矩阵 计算机科学 散列函数 离散化 数学 数据预处理 人工智能 算法 数据挖掘 数学分析 哲学 物理 图像(数学) 量子力学 特征向量 语言学 计算机安全
作者
Gaoteng Yuan,Yi Zhai,Jiansong Tang,Xiaofeng Zhou
出处
期刊:Neurocomputing [Elsevier]
卷期号:552: 126564-126564 被引量:2
标识
DOI:10.1016/j.neucom.2023.126564
摘要

Feature selection (FS) based on mutual information (MI) metrics needs to discretize the data in preprocessing, which is a convenient way to identify correlation between features. However, information loss often occurs in data discretization. In order to solve this information loss problem, this paper proposes a FS algorithm based on cosine similarity coefficient and information measurement criterion (CSCIM_FS). First, the MI between features and tags is calculated, and features are sorted out according to the MI calculated. Then, a feature matrix is constructed to transform the one-dimensional feature sequence into a two-dimensional square matrix. Next, cosine transform is adopted to obtain the high-frequency components of the feature matrix, and sampling is conducted to derive the hash fingerprint of the feature matrix. After that, the similarity between every two features is calculated on the basis of the hash fingerprints of different features. Finally, the feature weight is calculated according to tags, the MI and similarity between features, and a key feature subset is obtained and used to conduct feature selection from the data. The experimental results on several UCI public datasets show that CSCIM_FS algorithm selected a feature subset with high accuracy, and that this algorithm performs better than MIM, CMIM, mRMR and other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安饼干完成签到 ,获得积分10
刚刚
活泼的飞鸟完成签到,获得积分10
刚刚
1秒前
xuyun发布了新的文献求助10
1秒前
1秒前
zzcres完成签到,获得积分10
3秒前
eeeee完成签到 ,获得积分10
3秒前
乐观德地完成签到,获得积分10
4秒前
大个应助yf_zhu采纳,获得10
4秒前
llk发布了新的文献求助10
5秒前
一只大肥猫完成签到,获得积分10
5秒前
5秒前
7秒前
7秒前
7秒前
7秒前
科研通AI5应助GGG采纳,获得10
8秒前
8秒前
10秒前
Ann发布了新的文献求助20
10秒前
10秒前
buno应助duxinyue采纳,获得10
10秒前
xlj发布了新的文献求助10
11秒前
11秒前
可爱的函函应助zhen采纳,获得10
12秒前
研友_VZG7GZ应助dingdong采纳,获得10
13秒前
13秒前
李成恩完成签到 ,获得积分10
14秒前
心碎的黄焖鸡完成签到 ,获得积分10
14秒前
琪琪扬扬发布了新的文献求助10
15秒前
16秒前
16秒前
宗磬完成签到,获得积分10
17秒前
NexusExplorer应助搞怪不言采纳,获得10
18秒前
科研通AI5应助一天八杯水采纳,获得10
19秒前
19秒前
19秒前
20秒前
大模型应助琪琪扬扬采纳,获得10
21秒前
丘比特应助琪琪扬扬采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808