CSCIM_FS: Cosine similarity coefficient and information measurement criterion-based feature selection method for high-dimensional data

特征选择 模式识别(心理学) 特征(语言学) 余弦相似度 相似性(几何) 系数矩阵 计算机科学 散列函数 离散化 数学 数据预处理 人工智能 算法 数据挖掘 数学分析 哲学 物理 图像(数学) 量子力学 特征向量 语言学 计算机安全
作者
Gaoteng Yuan,Yi Zhai,Jiansong Tang,Xiaofeng Zhou
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:552: 126564-126564 被引量:2
标识
DOI:10.1016/j.neucom.2023.126564
摘要

Feature selection (FS) based on mutual information (MI) metrics needs to discretize the data in preprocessing, which is a convenient way to identify correlation between features. However, information loss often occurs in data discretization. In order to solve this information loss problem, this paper proposes a FS algorithm based on cosine similarity coefficient and information measurement criterion (CSCIM_FS). First, the MI between features and tags is calculated, and features are sorted out according to the MI calculated. Then, a feature matrix is constructed to transform the one-dimensional feature sequence into a two-dimensional square matrix. Next, cosine transform is adopted to obtain the high-frequency components of the feature matrix, and sampling is conducted to derive the hash fingerprint of the feature matrix. After that, the similarity between every two features is calculated on the basis of the hash fingerprints of different features. Finally, the feature weight is calculated according to tags, the MI and similarity between features, and a key feature subset is obtained and used to conduct feature selection from the data. The experimental results on several UCI public datasets show that CSCIM_FS algorithm selected a feature subset with high accuracy, and that this algorithm performs better than MIM, CMIM, mRMR and other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
寡妇哥完成签到 ,获得积分10
刚刚
刚刚
zcl发布了新的文献求助10
1秒前
Orange应助####采纳,获得10
1秒前
2秒前
wcs65948完成签到,获得积分10
3秒前
平淡夏云完成签到,获得积分10
3秒前
3秒前
善学以致用应助源源采纳,获得10
4秒前
渤海少年发布了新的文献求助10
4秒前
上官若男应助仔仔仔平采纳,获得10
4秒前
Ava应助局内人采纳,获得10
4秒前
单薄的凡灵完成签到,获得积分10
4秒前
吉吉国王的跟班完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
康康完成签到,获得积分10
6秒前
yuting发布了新的文献求助30
6秒前
甜蜜的盼望完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
铁柱xh完成签到 ,获得积分10
7秒前
7秒前
漂亮十三关注了科研通微信公众号
7秒前
羊蓝蓝蓝完成签到,获得积分20
7秒前
zhenjl完成签到,获得积分20
7秒前
王贺发布了新的文献求助10
7秒前
zjh发布了新的文献求助10
8秒前
8秒前
9秒前
平常山雁关注了科研通微信公众号
9秒前
Jasper应助lll采纳,获得10
9秒前
10秒前
敬鱼完成签到,获得积分20
10秒前
11秒前
KY2022发布了新的文献求助10
11秒前
zhenjl发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227