清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic Myocardial Contrast Echocardiography Image Quality Assessment Using Deep Learning: Impact on Myocardial Perfusion Evaluation

图像质量 组内相关 医学 质量得分 灌注 质量评定 灌注扫描 对比度(视觉) 心脏病学 外部质量评估 放射科 再现性 内科学 人工智能 计算机科学 统计 数学 图像(数学) 病理 经济 公制(单位) 运营管理
作者
Mingqi Li,Dewen Zeng,Hongwen Fei,Hongning Song,Jinling Chen,Sheng Cao,Bo Hu,Yanxiang Zhou,Yuxin Guo,Xiaowei Xu,Kui Huang,Ji Zhang,Qing Zhou
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:49 (10): 2247-2255 被引量:1
标识
DOI:10.1016/j.ultrasmedbio.2023.07.002
摘要

Objective The image quality of myocardial contrast echocardiography (MCE) is critical for precise myocardial perfusion evaluation but challenging for echocardiographers. Differences in quality may lead to diagnostic heterogeneity. This study was aimed at achieving automatic MCE image quality assessment using a deep neural network (DNN) and investigating its impact on myocardial perfusion evaluation. Methods The Resnet-18 model was used for training and testing on internal and external data sets. Quality assessment involved three aspects: left ventricular opacification (LVO), shadowing, and flash adequacy; the quality score was calculated based on image quality. This study explored the impact of the DNN-based quality score on perfusion evaluation (normal, delay or obstruction) by echocardiographers (two seniors, one junior and one novice). Additionally, the effect of the score difference between re-scans on perfusion evaluation was investigated. Results The time cost for DNN prediction was 0.045 s/frame. In internal validation and external testing, the DNN achieved F1 and macro F1 scores >90% for quality assessment and had high intraclass correlation coefficients (0.954 and 0.892, respectively) in sequence quality scores. The proportion of segments deemed uninterpretable increased as the DNN-based quality score decreased. The agreement of perfusion assessment between one senior and others decreased as the quality score decreased. And the greater the score difference between the re-scans, the lower was the agreement on perfusion assessment by the same echocardiographer. Conclusion This study determined the effectiveness of DNN for real-time automatic MCE quality assessment. It has the potential to reduce the variability in perfusion evaluation among echocardiographers. The image quality of myocardial contrast echocardiography (MCE) is critical for precise myocardial perfusion evaluation but challenging for echocardiographers. Differences in quality may lead to diagnostic heterogeneity. This study was aimed at achieving automatic MCE image quality assessment using a deep neural network (DNN) and investigating its impact on myocardial perfusion evaluation. The Resnet-18 model was used for training and testing on internal and external data sets. Quality assessment involved three aspects: left ventricular opacification (LVO), shadowing, and flash adequacy; the quality score was calculated based on image quality. This study explored the impact of the DNN-based quality score on perfusion evaluation (normal, delay or obstruction) by echocardiographers (two seniors, one junior and one novice). Additionally, the effect of the score difference between re-scans on perfusion evaluation was investigated. The time cost for DNN prediction was 0.045 s/frame. In internal validation and external testing, the DNN achieved F1 and macro F1 scores >90% for quality assessment and had high intraclass correlation coefficients (0.954 and 0.892, respectively) in sequence quality scores. The proportion of segments deemed uninterpretable increased as the DNN-based quality score decreased. The agreement of perfusion assessment between one senior and others decreased as the quality score decreased. And the greater the score difference between the re-scans, the lower was the agreement on perfusion assessment by the same echocardiographer. This study determined the effectiveness of DNN for real-time automatic MCE quality assessment. It has the potential to reduce the variability in perfusion evaluation among echocardiographers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gege完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
馆长举报英吉利25求助涉嫌违规
2分钟前
馆长举报四月求助涉嫌违规
3分钟前
3分钟前
3分钟前
顺利的雁梅完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
两个榴莲完成签到,获得积分0
4分钟前
4分钟前
RLLLLLLL完成签到 ,获得积分10
4分钟前
4分钟前
yangxi发布了新的文献求助10
5分钟前
研友_VZG7GZ应助yangxi采纳,获得10
5分钟前
yangxi完成签到,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
BinBlues完成签到,获得积分10
6分钟前
6分钟前
6分钟前
vicky完成签到 ,获得积分10
7分钟前
冷傲半邪完成签到,获得积分10
7分钟前
7分钟前
nuliguan完成签到 ,获得积分10
7分钟前
7分钟前
激动的似狮完成签到,获得积分10
7分钟前
7分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
zpc猪猪完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596449
求助须知:如何正确求助?哪些是违规求助? 4008332
关于积分的说明 12409129
捐赠科研通 3687356
什么是DOI,文献DOI怎么找? 2032344
邀请新用户注册赠送积分活动 1065591
科研通“疑难数据库(出版商)”最低求助积分说明 950877