Doctor selection based on aspect-based sentiment analysis and neutrosophic TOPSIS method

托普西斯 计算机科学 排名(信息检索) 偏爱 秩(图论) 灵活性(工程) 情绪分析 文字2vec 人工智能 相似性(几何) 选择(遗传算法) 医疗保健 数据挖掘 情报检索 运筹学 统计 数学 嵌入 组合数学 经济 图像(数学) 经济增长
作者
Xihua Li,Luo Yun,Li Wang,Jiong Lin,Bin Deng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:124: 106599-106599 被引量:8
标识
DOI:10.1016/j.engappai.2023.106599
摘要

Physician-rating sites have become a convenient platform for patients to choose doctors. However, selecting an appropriate doctor through numerous online reviews is challengeable for patients. Although studies show that patients have different preferences for the aspects of healthcare services, existing doctor ranking methods rarely consider such preference information. Besides, they seldom handle the neutral sentiment information in patient reviews. To better assist patients in doctor selection, we propose a novel decision-making method that combines aspect-based sentiment analysis, single-valued neutrosophic sets and an extended Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. The method utilizes Word2Vec to construct a feature dictionary of patient satisfaction. A rule-based approach is employed to extract the aspects and the related sentiments from patients’ text reviews. Moreover, it takes advantage of single-valued neutrosophic sets to address the positive, neutral and negative sentiment information. On this basis, we rank the doctors with an extended TOPSIS method considering the patient’s attitudinal character and the preference information. A case study on a review dataset demonstrates the stability and flexibility of the method. The comparative analysis reveals that our method can efficiently reduce information loss and it is more practical than existing methods. Considering patients’ different preferences for the aspects of healthcare services, the method can better provide healthcare decision support for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
xiaomabaoli发布了新的文献求助10
3秒前
糖豆发布了新的文献求助10
5秒前
王江山发布了新的文献求助10
5秒前
七曜完成签到,获得积分10
6秒前
随安完成签到,获得积分20
8秒前
阿渺发布了新的文献求助10
9秒前
云海老发布了新的文献求助10
9秒前
9秒前
Sandrine完成签到,获得积分10
13秒前
盛夏蔚来发布了新的文献求助10
13秒前
15秒前
科研通AI2S应助塵埃采纳,获得10
15秒前
吱吱发布了新的文献求助10
15秒前
经年完成签到,获得积分20
16秒前
深情安青应助欣喜寻云采纳,获得10
16秒前
开心的秋寒完成签到,获得积分10
19秒前
淡定的依瑶完成签到,获得积分10
20秒前
充电宝应助Dawn采纳,获得10
20秒前
20秒前
Shaynin发布了新的文献求助10
20秒前
20秒前
图图完成签到,获得积分10
21秒前
Leofar发布了新的文献求助10
21秒前
zijunzheng发布了新的文献求助10
21秒前
21秒前
在水一方应助声声慢采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
吾将上下而求索应助经年采纳,获得10
24秒前
华健发布了新的文献求助10
25秒前
xiaomabaoli完成签到,获得积分20
25秒前
25秒前
斯文败类应助zjh采纳,获得10
25秒前
花景铭完成签到,获得积分10
27秒前
28秒前
捕鱼小猫勇往直前完成签到,获得积分10
28秒前
29秒前
30秒前
岳阳张震岳完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868