Select, Purify, and Exchange: A Multisource Unsupervised Domain Adaptation Method for Building Extraction

计算机科学 交叉口(航空) 领域(数学分析) 域适应 编码(集合论) 一般化 人工智能 适应(眼睛) 源代码 信息抽取 数据挖掘 机器学习 模式识别(心理学) 地理 集合(抽象数据类型) 数学 地图学 程序设计语言 数学分析 物理 光学 操作系统 分类器(UML)
作者
Shuang Wang,Qi Zang,Zhao Dong,Chaowei Fang,Dou Quan,Yang-Tao Wan,Yanhe Guo,Licheng Jiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2023.3291876
摘要

Accurately extracting buildings from aerial images has essential research significance for timely understanding human intervention on the land. The distribution discrepancies between diversified unlabeled remote sensing images (changes in imaging sensor, location, and environment) and labeled historical images significantly degrade the generalization performance of deep learning algorithms. Unsupervised domain adaptation (UDA) algorithms have recently been proposed to eliminate the distribution discrepancies without re-annotating training data for new domains. Nevertheless, due to the limited information provided by a single-source domain, single-source UDA (SSUDA) is not an optimal choice when multitemporal and multiregion remote sensing images are available. We propose a multisource UDA (MSUDA) framework SPENet for building extraction, aiming at selecting, purifying, and exchanging information from multisource domains to better adapt the model to the target domain. Specifically, the framework effectively utilizes richer knowledge by extracting target-relevant information from multiple-source domains, purifying target domain information with low-level features of buildings, and exchanging target domain information in an interactive learning manner. Extensive experiments and ablation studies constructed on 12 city datasets prove the effectiveness of our method against existing state-of-the-art methods, e.g., our method achieves $59.1\%$ intersection over union (IoU) on Austin and Kitsap $\longrightarrow $ Potsdam, which surpasses the target domain supervised method by $2.2\%$ . The code is available at https://github.com/QZangXDU/SPENet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
低调000完成签到,获得积分10
1秒前
今后应助bioinfo_sc采纳,获得10
1秒前
yookia应助wym0072003采纳,获得10
2秒前
GK完成签到,获得积分10
3秒前
4秒前
砍柴少年发布了新的文献求助10
5秒前
5秒前
6秒前
思源应助Zzz采纳,获得10
7秒前
昀离完成签到,获得积分10
7秒前
无私的芹应助砍柴少年采纳,获得10
9秒前
10秒前
Lucas应助jiangliuer采纳,获得10
10秒前
吃狼的羊完成签到,获得积分10
10秒前
10秒前
11秒前
无花果应助11111采纳,获得10
11秒前
CipherSage应助Cloud9采纳,获得10
11秒前
英俊中心完成签到,获得积分10
12秒前
明亮从梦完成签到,获得积分10
12秒前
细腻慕儿完成签到 ,获得积分10
12秒前
Eliauk发布了新的文献求助10
13秒前
李健的小迷弟应助Liella采纳,获得10
13秒前
13秒前
Zzz完成签到,获得积分10
14秒前
12243243完成签到,获得积分10
14秒前
黄家宝完成签到,获得积分10
14秒前
苹果井完成签到,获得积分20
15秒前
LYSM应助微热山丘采纳,获得20
15秒前
15秒前
lm完成签到,获得积分10
15秒前
777777777发布了新的文献求助10
16秒前
123发布了新的文献求助10
16秒前
杰西完成签到 ,获得积分10
16秒前
MOMO完成签到,获得积分10
16秒前
16秒前
堕落的大金毛完成签到,获得积分10
17秒前
17秒前
千崧完成签到,获得积分10
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771