Emphasizing feature inter-class separability for improving highly imbalanced overlapped data classification

计算机科学 稳健性(进化) 人工智能 特征(语言学) 班级(哲学) 机器学习 模式识别(心理学) 提取器 特征向量 特征提取 数据挖掘 工程类 生物化学 基因 哲学 化学 语言学 工艺工程
作者
Huiran Yan,Zenghao Cui,Xinyi Luo,Rui Wang,Yuan Yao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:276: 110745-110745 被引量:4
标识
DOI:10.1016/j.knosys.2023.110745
摘要

Class imbalance hinders the performance of some standard classifiers. However, class imbalance may not be solely responsible for the decrease in performance. Research efforts show that imbalanced datasets suffer from overlapping problems and borderline samples, which often deteriorate the classification performance. Conventional imbalanced learning methods mainly focus on balancing the distribution between classes but ignore difficulties caused by the above problems, thus underperforming drastically. This paper proposes a hybrid network called SemiPro-Empha to alleviate the aforementioned problems by learning a feature space with good inter-class separability and intra-class compactness. SemiPro-Empha comprises two modules: a feature learning loss called Semi-Prototype contrastive loss (Semi-Proto), guiding the feature extractor to learn a feature space where the projections of original overlapping classes can be separated, thereby improving classification performance. Additionally, this paper also presents a robust valuable borderline sample mining strategy called Emphasizing (Empha). Emphasizing identifies "valuable" borderline samples and eliminates noisy samples to create an auxiliary training dataset during each training epoch, providing up-to-date global classification boundary information for the training model while ensuring its robustness. Extensive experiments conducted on the breast cancer dataset and seven imbalanced datasets demonstrate the effectiveness of SemiPro-Empha.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥粥发布了新的文献求助10
1秒前
科研通AI6应助Jodie采纳,获得10
1秒前
丘比特应助Jodie采纳,获得10
1秒前
abb发布了新的文献求助10
1秒前
小蜜蜂完成签到,获得积分10
2秒前
2秒前
4秒前
兜有米完成签到,获得积分10
4秒前
5秒前
5秒前
jianguo完成签到,获得积分10
6秒前
Running完成签到 ,获得积分10
6秒前
6秒前
落寞的发卡完成签到,获得积分10
7秒前
cccc发布了新的文献求助10
7秒前
7秒前
文静的夜梅完成签到 ,获得积分10
7秒前
科研通AI6应助Sio采纳,获得10
8秒前
温暖妙彤完成签到,获得积分10
9秒前
简单老三完成签到,获得积分10
9秒前
10秒前
脑洞疼应助OngJi采纳,获得10
10秒前
wanci应助健忘捕采纳,获得10
11秒前
七七发布了新的文献求助30
11秒前
TYW发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
14秒前
温暖妙彤发布了新的文献求助10
14秒前
李爱国应助minion采纳,获得10
14秒前
PSJ完成签到,获得积分10
15秒前
小蘑菇应助Houyulu采纳,获得10
15秒前
张瑞雪发布了新的文献求助20
16秒前
16秒前
打打应助zhuxuanfeng采纳,获得10
17秒前
gb完成签到 ,获得积分10
17秒前
王大哥完成签到,获得积分10
17秒前
朱猪侠发布了新的文献求助10
18秒前
02完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460985
求助须知:如何正确求助?哪些是违规求助? 4566080
关于积分的说明 14303083
捐赠科研通 4491670
什么是DOI,文献DOI怎么找? 2460439
邀请新用户注册赠送积分活动 1449757
关于科研通互助平台的介绍 1425537