Emphasizing feature inter-class separability for improving highly imbalanced overlapped data classification

计算机科学 稳健性(进化) 人工智能 特征(语言学) 班级(哲学) 机器学习 模式识别(心理学) 提取器 特征向量 特征提取 数据挖掘 工程类 语言学 生物化学 化学 哲学 工艺工程 基因
作者
Huiran Yan,Zenghao Cui,Xinyi Luo,Rui Wang,Yuan Yao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:276: 110745-110745 被引量:4
标识
DOI:10.1016/j.knosys.2023.110745
摘要

Class imbalance hinders the performance of some standard classifiers. However, class imbalance may not be solely responsible for the decrease in performance. Research efforts show that imbalanced datasets suffer from overlapping problems and borderline samples, which often deteriorate the classification performance. Conventional imbalanced learning methods mainly focus on balancing the distribution between classes but ignore difficulties caused by the above problems, thus underperforming drastically. This paper proposes a hybrid network called SemiPro-Empha to alleviate the aforementioned problems by learning a feature space with good inter-class separability and intra-class compactness. SemiPro-Empha comprises two modules: a feature learning loss called Semi-Prototype contrastive loss (Semi-Proto), guiding the feature extractor to learn a feature space where the projections of original overlapping classes can be separated, thereby improving classification performance. Additionally, this paper also presents a robust valuable borderline sample mining strategy called Emphasizing (Empha). Emphasizing identifies "valuable" borderline samples and eliminates noisy samples to create an auxiliary training dataset during each training epoch, providing up-to-date global classification boundary information for the training model while ensuring its robustness. Extensive experiments conducted on the breast cancer dataset and seven imbalanced datasets demonstrate the effectiveness of SemiPro-Empha.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Kmong采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
刚刚
Orange应助科研通管家采纳,获得10
刚刚
bogba发布了新的文献求助10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
1秒前
Gauss完成签到,获得积分0
2秒前
上官若男应助哇咔咔采纳,获得10
2秒前
2秒前
舒适念真发布了新的文献求助10
3秒前
3秒前
珂伟应助Voloid采纳,获得20
3秒前
10Shi完成签到 ,获得积分10
4秒前
大风起兮完成签到,获得积分10
5秒前
艳艳发布了新的文献求助10
5秒前
6秒前
科研通AI2S应助温暖的蚂蚁采纳,获得10
7秒前
烟花应助略略略采纳,获得10
7秒前
小蘑菇应助RYY采纳,获得10
7秒前
李爱国应助康球窗子采纳,获得10
8秒前
8秒前
8秒前
lu发布了新的文献求助10
8秒前
96完成签到 ,获得积分10
9秒前
9秒前
苏以祀完成签到,获得积分10
10秒前
11秒前
oovvvi完成签到,获得积分20
11秒前
13秒前
调研昵称发布了新的文献求助10
13秒前
哇咔咔发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
冷酷鱼发布了新的文献求助10
17秒前
yinshan完成签到 ,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300378
求助须知:如何正确求助?哪些是违规求助? 2935023
关于积分的说明 8471430
捐赠科研通 2608574
什么是DOI,文献DOI怎么找? 1424325
科研通“疑难数据库(出版商)”最低求助积分说明 661957
邀请新用户注册赠送积分活动 645649