Emphasizing feature inter-class separability for improving highly imbalanced overlapped data classification

计算机科学 稳健性(进化) 人工智能 特征(语言学) 班级(哲学) 机器学习 模式识别(心理学) 提取器 特征向量 特征提取 数据挖掘 工程类 生物化学 基因 哲学 化学 语言学 工艺工程
作者
Huiran Yan,Zenghao Cui,Xinyi Luo,Rui Wang,Yuan Yao
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:276: 110745-110745 被引量:4
标识
DOI:10.1016/j.knosys.2023.110745
摘要

Class imbalance hinders the performance of some standard classifiers. However, class imbalance may not be solely responsible for the decrease in performance. Research efforts show that imbalanced datasets suffer from overlapping problems and borderline samples, which often deteriorate the classification performance. Conventional imbalanced learning methods mainly focus on balancing the distribution between classes but ignore difficulties caused by the above problems, thus underperforming drastically. This paper proposes a hybrid network called SemiPro-Empha to alleviate the aforementioned problems by learning a feature space with good inter-class separability and intra-class compactness. SemiPro-Empha comprises two modules: a feature learning loss called Semi-Prototype contrastive loss (Semi-Proto), guiding the feature extractor to learn a feature space where the projections of original overlapping classes can be separated, thereby improving classification performance. Additionally, this paper also presents a robust valuable borderline sample mining strategy called Emphasizing (Empha). Emphasizing identifies "valuable" borderline samples and eliminates noisy samples to create an auxiliary training dataset during each training epoch, providing up-to-date global classification boundary information for the training model while ensuring its robustness. Extensive experiments conducted on the breast cancer dataset and seven imbalanced datasets demonstrate the effectiveness of SemiPro-Empha.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美的友蕊应助隐形谷秋采纳,获得10
刚刚
LiuAndy应助隐形谷秋采纳,获得10
刚刚
刚刚
善学以致用应助marco采纳,获得10
刚刚
zz完成签到 ,获得积分10
1秒前
领导范儿应助猜不猜不采纳,获得10
1秒前
丘比特应助dyd采纳,获得30
2秒前
辛苦科研人完成签到 ,获得积分10
2秒前
慕青应助maomi采纳,获得10
3秒前
隐形曼青应助张雨欣采纳,获得10
4秒前
qqqqqq应助啁啾采纳,获得30
4秒前
体贴汽车发布了新的文献求助10
5秒前
5秒前
Lucas应助wodetaiyangLLL采纳,获得10
7秒前
9秒前
dnnnsns发布了新的文献求助10
12秒前
梅子完成签到 ,获得积分10
12秒前
13秒前
15秒前
iNk应助sally采纳,获得20
16秒前
专一的书雪完成签到,获得积分10
16秒前
张雨欣发布了新的文献求助10
18秒前
18秒前
zwj完成签到,获得积分10
19秒前
19秒前
watermanlo完成签到,获得积分10
20秒前
20秒前
lisa发布了新的文献求助10
21秒前
Orange应助木木采纳,获得10
21秒前
pipi1412发布了新的文献求助20
24秒前
26秒前
太叔捕发布了新的文献求助10
26秒前
28秒前
情怀应助科研通管家采纳,获得10
29秒前
英姑应助科研通管家采纳,获得10
30秒前
大个应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
Hayat应助科研通管家采纳,获得10
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
64658应助科研通管家采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512526
关于积分的说明 11163850
捐赠科研通 3247430
什么是DOI,文献DOI怎么找? 1793831
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804494