已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TCNet: Co-Salient Object Detection via Parallel Interaction of Transformers and CNNs

计算机科学 突出 人工智能 卷积神经网络 特征提取 目标检测 一致性(知识库) 模式识别(心理学) 数据挖掘
作者
Yanliang Ge,Qiao Zhang,Tian-Zhu Xiang,Cong Zhang,Hongbo Bi
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (6): 2600-2615 被引量:14
标识
DOI:10.1109/tcsvt.2022.3225865
摘要

The purpose of co-salient object detection (CoSOD) is to detect the salient objects that co-occur in a group of relevant images. CoSOD has been significantly prospered by recent advances in convolutional neural networks (CNNs). However, it shows general limitations in modeling long-range feature dependencies, which is crucial for CoSOD. In the vision transformer, the self-attention mechanism is utilized to capture global dependencies but unfortunately destroy local spatial details, which are also essential for CoSOD. To address the above issues, we propose a dual network structure, called TCNet, which can efficiently excavate both local information and global representations for co-saliency learning via the parallel interaction of Transformers and CNNs. Specifically, it contains three critical components, i.e., the mutual consensus module (MCM), the consensus complementary module (CCM), and the group consistent progressive decoder (GCPD). MCM aims to capture the global consensus from high-level features of these two branches as a guide for the following integration of consensus cues of both branches at each level. Next, CCM is designed to effectively fuse the consensus of local information and global contexts from different levels of the two branches. Finally, GCPD is developed to maintain group feature consistency and predict accurate co-saliency maps. The proposed TCNet is evaluated on five challenging CoSOD benchmark datasets using six widely used metrics, showing that our proposed method is superior to other existing cutting-edge methods for co-salient object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助小太阳采纳,获得10
1秒前
汉堡包应助李春霞采纳,获得10
3秒前
章水云发布了新的文献求助10
3秒前
Cosmosurfer完成签到,获得积分10
4秒前
海林涵完成签到 ,获得积分10
4秒前
小林发布了新的文献求助10
4秒前
zhangshenlan发布了新的文献求助10
5秒前
Lucas应助wovy采纳,获得10
12秒前
energyharvester完成签到 ,获得积分10
20秒前
耳东陈完成签到 ,获得积分10
23秒前
LX完成签到 ,获得积分10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
nenoaowu应助科研通管家采纳,获得30
23秒前
23秒前
lijall发布了新的文献求助10
26秒前
乐观的饭饭完成签到 ,获得积分10
29秒前
yan完成签到 ,获得积分10
30秒前
Java完成签到,获得积分10
31秒前
淡漠完成签到 ,获得积分10
34秒前
紫紫完成签到,获得积分10
36秒前
如烈火如止水完成签到,获得积分10
36秒前
今夜有雨完成签到 ,获得积分10
37秒前
四十四次日落完成签到 ,获得积分10
37秒前
天天快乐应助Rick采纳,获得10
40秒前
YIMI完成签到,获得积分10
41秒前
lixiniverson完成签到 ,获得积分10
43秒前
糖醋里脊加醋完成签到 ,获得积分10
44秒前
lijall完成签到,获得积分10
45秒前
张张完成签到,获得积分10
46秒前
uranus完成签到,获得积分10
46秒前
xrl完成签到,获得积分10
49秒前
50秒前
yihua完成签到,获得积分10
50秒前
Geodada完成签到,获得积分10
54秒前
wangfang0228完成签到 ,获得积分10
54秒前
55秒前
xu完成签到 ,获得积分10
55秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674213
求助须知:如何正确求助?哪些是违规求助? 3229625
关于积分的说明 9786471
捐赠科研通 2940155
什么是DOI,文献DOI怎么找? 1611710
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736352