清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A new method for heart rate prediction based on LSTM-BiLSTM-Att

自回归积分移动平均 人工智能 均方误差 计算机科学 人工神经网络 心率 字错误率 随机森林 模式识别(心理学) 时间序列 机器学习 统计 数学 医学 内科学 血压
作者
Haijun Lin,Sirao Zhang,Qinghao Li,Ya Li,Jianmin Li,Yuxiang Yang
出处
期刊:Measurement [Elsevier]
卷期号:207: 112384-112384 被引量:26
标识
DOI:10.1016/j.measurement.2022.112384
摘要

This paper proposes a new method for heart rate prediction based on LSTM-BiLSTM-Att model (Long Short Term Memory, Bidirectional LSTM, Attention Mechanism). In this LSTM-BiLSTM-Att model, LSTM is used to construct the long-term relationship of the heart rate data, and then abstract the high-dimensional features of the heart rate. BiLSTM has the ability to capture the forward and backward correlation information of these heart rate data, and then effectively learn the features of the heart rate data extracted by LSTM. The attention mechanism is added to this proposed model, which can further improve the performance of this heart rate prediction method. The number of neurons, the length of sliding window, and the depth of the LSTM-BiLSTM-Att model are optimized. Two volunteers were randomly selected from 30 volunteers to test the resting heart rate prediction by using random forest (RF) method, ARIMA, the feed forward neural network (FNN), LSTM model, BiLSTM model, LSTM-BiLSTM model, and LSTM-BiLSTM-Att model. The experimental results show that the root mean square error (RMSE) of the resting heart rate of the male volunteer by using this proposed LSTM-BiLSTM-Att model is 2.520, which is 43.9% of RF, 45.9% of ARIMA, 92.1% of FNN and 98.2% of LSTM, respectively; the RMSE of the male volunteer by using the LSTM-BiLSTM-Att model is 1.729, which is 45.5% of RF, 49.5% of ARIMA, 93.6% of FNN and 96.2% of LSTM, respectively. This proposed LSTM-BiLSTM-Att method effectively improves the accuracy of heart rate prediction, and the experimental results prove the effectiveness of this method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17852573662完成签到,获得积分10
28秒前
光亮的自行车完成签到 ,获得积分10
28秒前
清净126完成签到 ,获得积分10
30秒前
孟寐以求完成签到 ,获得积分10
32秒前
路路完成签到 ,获得积分10
42秒前
风秋杨完成签到 ,获得积分10
45秒前
雪山飞龙完成签到,获得积分10
2分钟前
zai完成签到 ,获得积分10
2分钟前
ming应助科研通管家采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
安静的ky完成签到 ,获得积分10
2分钟前
双眼皮跳蚤完成签到,获得积分10
3分钟前
天问完成签到 ,获得积分10
3分钟前
beikeyy发布了新的文献求助10
3分钟前
岩松完成签到 ,获得积分10
3分钟前
英姑应助beikeyy采纳,获得10
3分钟前
听话的靖柏完成签到 ,获得积分10
3分钟前
景代丝完成签到,获得积分10
4分钟前
Emperor完成签到 ,获得积分0
4分钟前
4分钟前
pupu发布了新的文献求助10
4分钟前
ming应助科研通管家采纳,获得10
4分钟前
善学以致用应助pupu采纳,获得10
4分钟前
手术刀完成签到 ,获得积分10
4分钟前
pupu完成签到,获得积分10
5分钟前
jameslee04完成签到 ,获得积分10
5分钟前
科研菜鸡完成签到 ,获得积分10
5分钟前
搜集达人应助daihq3采纳,获得10
5分钟前
daihq3完成签到,获得积分10
5分钟前
5分钟前
科研佟完成签到 ,获得积分10
5分钟前
daihq3发布了新的文献求助10
5分钟前
jason完成签到 ,获得积分10
6分钟前
云飞扬完成签到 ,获得积分10
6分钟前
无悔完成签到 ,获得积分10
6分钟前
开心每一天完成签到 ,获得积分10
7分钟前
合不着完成签到 ,获得积分10
7分钟前
弃医遛鸟登高而歌完成签到 ,获得积分10
7分钟前
lanxinge完成签到 ,获得积分10
7分钟前
小小果妈完成签到 ,获得积分10
7分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139615
求助须知:如何正确求助?哪些是违规求助? 2790511
关于积分的说明 7795430
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176