控制工程
稳健性(进化)
PID控制器
工程类
电子速度控制
控制理论(社会学)
推进
直流电动机
自适应控制
自适应神经模糊推理系统
模糊逻辑
智能控制
模糊控制系统
计算机科学
控制(管理)
人工智能
温度控制
基因
电气工程
生物化学
航空航天工程
化学
作者
Ahmed Hafez,Amr Sarhan
出处
期刊:International Journal of Heavy Vehicle Systems
[Inderscience Enterprises Ltd.]
日期:2022-01-01
卷期号:29 (4): 407-407
标识
DOI:10.1504/ijhvs.2022.127830
摘要
Brushless direct current motors (BLDC) are used in controlling the unmanned vehicles (UV) rotors dynamics. In this paper, speed control for BLDC motor via a set of adaptive intelligent control techniques is tackled. Adaptive neuro fuzzy inference systems (ANFIS), self-adaptive proportional - integral - derivative (SA-PID) and adaptive fuzzy sliding mode control (AFSMC) are applied to control the speed of the BLDC to maintain the required speed guaranteeing better performance, robustness and safety of the UV during mission. The main contribution in this paper lies in solving the speed control problem for a BLDC on board an UV via artificial intelligent control techniques ensuring the success of the UV in performing the required mission. The simulation results prove the success of designed controller to achieve the desired speed and the enhancement of the performance compared with traditional controllers.
科研通智能强力驱动
Strongly Powered by AbleSci AI