Integrating spatial transcriptomics data across different conditions, technologies, and developmental stages

计算机科学 嗅球 仿形(计算机编程) 数据挖掘 模式识别(心理学) 生物 人工智能 神经科学 操作系统 中枢神经系统
作者
Xiang Zhou,Kangning Dong,Shihua Zhang
标识
DOI:10.1101/2022.12.26.521888
摘要

Abstract With the rapid generation of spatial transcriptomics (ST) data, integrative analysis of multiple ST datasets from different conditions, technologies, and developmental stages is becoming increasingly important. However, identifying shared and specific spatial domains across ST datasets of multiple slices remains challenging. To this end, we develop a graph attention neural network STAligner for integrating and aligning ST datasets, enabling spatially-aware data integration, simultaneous spatial domain identification, and downstream comparative analysis. We apply STAligner to the integrative analysis of ST datasets of the human cortex slices from different samples, the mouse olfactory bulb slices generated by two profiling technologies, the mouse hippocampus tissue slices under normal and Alzheimer’s disease conditions, and the spatiotemporal atlases of mouse organogenesis. STAligner efficiently captures the shared tissue structures across different slices, the disease-related substructures, and the dynamical changes during mouse embryonic development. Additionally, the shared spatial domain and nearest neighbor pairs identified by STAligner can be further considered as corresponding pairs to guide the three-dimensional reconstruction of consecutive slices, achieving more accurate local structure-guided registration results than the existing method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助茉莉采纳,获得10
1秒前
1秒前
风清扬发布了新的文献求助10
2秒前
zhaoty发布了新的文献求助10
3秒前
小蘑菇应助曼容采纳,获得10
3秒前
冷静未来完成签到,获得积分10
4秒前
积极松鼠完成签到,获得积分10
5秒前
5秒前
5秒前
mufulee完成签到,获得积分10
5秒前
荞栎完成签到,获得积分10
6秒前
沉淀发布了新的文献求助10
6秒前
小马甲应助ab采纳,获得10
7秒前
科研通AI6应助上官采纳,获得10
7秒前
Wicky完成签到,获得积分10
7秒前
陈陈潇发布了新的文献求助20
7秒前
7秒前
8秒前
9秒前
10秒前
10秒前
侯总应助kingwill采纳,获得30
10秒前
11秒前
Utingg完成签到,获得积分10
11秒前
12秒前
沉默天宇发布了新的文献求助10
13秒前
13秒前
火星上觅珍完成签到,获得积分10
15秒前
pddl关注了科研通微信公众号
15秒前
Zx_1993应助周凯采纳,获得10
15秒前
Utingg发布了新的文献求助10
16秒前
茉莉发布了新的文献求助10
16秒前
吕俊杰完成签到,获得积分10
16秒前
LongY完成签到,获得积分10
16秒前
16秒前
17秒前
Allen发布了新的文献求助10
17秒前
18秒前
wen完成签到,获得积分10
18秒前
18秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588375
求助须知:如何正确求助?哪些是违规求助? 4671508
关于积分的说明 14787418
捐赠科研通 4625221
什么是DOI,文献DOI怎么找? 2531826
邀请新用户注册赠送积分活动 1500389
关于科研通互助平台的介绍 1468314