Multiform Ensemble Self-Supervised Learning for Few-Shot Remote Sensing Scene Classification

计算机科学 人工智能 串联(数学) 机器学习 水准点(测量) 监督学习 上下文图像分类 判别式 模式识别(心理学) 人工神经网络 图像(数学) 大地测量学 数学 组合数学 地理
作者
Jianzhao Li,Maoguo Gong,Huilin Liu,Yourun Zhang,Mingyang Zhang,Yue Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:4
标识
DOI:10.1109/tgrs.2023.3234252
摘要

Self-supervised learning is an effective way to solve model collapse for few-shot remote sensing scene classification (FSRSSC). However, most self-supervised contrastive learning auxiliary tasks perform poorly on the high interclass similarity problem in FSRSSC. Furthermore, it is time-consuming and computationally expensive to obtain the best combination among numerous self-supervised auxiliary tasks. In practical applications, we may encounter difficulties in remote sensing data acquisition and labeling, while most FSRSSC studies only focus on the former. To alleviate the above problems, we propose a multiform ensemble self-supervised learning (MES2L) framework for FSRSSC in this article. Based on the transfer learning-based few-shot scheme, we design a novel global–local contrastive learning auxiliary task to solve the low interclass separability problem. The self-attention mechanism is designed in the local contrast features to investigate the intrinsic associations between different remote sensing scene objectives. We also present a multiform ensemble enhancement (MEE) training method. Ensemble enhancement involves the concatenation of features extracted from different backbones trained by a combination of multiform self-supervised auxiliary tasks. MEE can not only be regarded as a more straightforward alternative to knowledge distillation but also can achieve an effective compromise between expensive computational cost and classification accuracy. In addition, we provide two scene classification schemes of inductive and transductive settings, corresponding to solving the difficulties of remote sensing data acquisition and labeling. The proposed network achieves state-of-the-art results on three benchmark FSRSSC datasets. The potential of the MES2L framework is also demonstrated in combination with classical metalearning-based and metric learning-based few-shot algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qweqwe完成签到,获得积分10
刚刚
1秒前
1秒前
野原顶不住完成签到,获得积分10
1秒前
1秒前
德鲁梦雨发布了新的文献求助10
2秒前
5秒前
5秒前
6秒前
王多鱼完成签到,获得积分10
6秒前
7秒前
Reftro发布了新的文献求助10
8秒前
8秒前
罗蒙洛索夫完成签到,获得积分10
8秒前
祖诗云应助succ采纳,获得30
9秒前
汉堡包应助Kyogoku采纳,获得10
10秒前
12秒前
可靠铅笔发布了新的文献求助10
13秒前
CipherSage应助王多鱼采纳,获得10
13秒前
14秒前
15秒前
15秒前
JamesPei应助littlesun采纳,获得10
16秒前
111完成签到,获得积分10
17秒前
17秒前
wxywx1023发布了新的文献求助10
18秒前
18秒前
ok完成签到,获得积分20
19秒前
香菜碗里来完成签到,获得积分10
20秒前
子车茗应助Coconut采纳,获得10
21秒前
大模型应助等待泥猴桃采纳,获得10
21秒前
李健应助不吃香菜采纳,获得10
21秒前
我是老大应助Reftro采纳,获得10
21秒前
宇宙发布了新的文献求助10
22秒前
23秒前
liangliu发布了新的文献求助10
24秒前
25秒前
乐乐应助Nelson采纳,获得10
25秒前
fei完成签到 ,获得积分10
26秒前
青苹果完成签到,获得积分10
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228715
求助须知:如何正确求助?哪些是违规求助? 2876473
关于积分的说明 8195167
捐赠科研通 2543670
什么是DOI,文献DOI怎么找? 1373912
科研通“疑难数据库(出版商)”最低求助积分说明 646868
邀请新用户注册赠送积分活动 621453