Investigation on the reaction mechanism of solid oxide co-electrolysis with different inlet mixtures based on the comparison of CO2 electrolysis and H2O electrolysis

电解 聚合物电解质膜电解 高温电解 电解槽 化学 材料科学 化学工程 氧化物 无机化学 电极 冶金 工程类 电解质 物理化学
作者
Jingjing Liang,Yige Wang,Jianzhong Zhu,Minfang Han,Kaihua Sun,Zaihong Sun
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:277: 116621-116621 被引量:7
标识
DOI:10.1016/j.enconman.2022.116621
摘要

The reaction mechanism of co-electrolysis on the solid oxide electrolysis cells (SOEC) was widely discussed and no consensus had ever been reached. The performance of CO2 electrolysis, H2O electrolysis and co-electrolysis was tested on an industrial-size cell with a conventional structure of Ni-YSZ|YSZ|GDC|LSCF. The co-electrolysis performance was inferior to that of H2O electrolysis but superior to that of CO2 electrolysis. Also, the total resistance (Rtot) of co-electrolysis first increased to a maximum and then began to descend with the increase of applied current, which was similar to the Rtot pattern of CO2 electrolysis but totally different from the monotonous increasing Rtot pattern of H2O electrolysis. Study on a button cell with the same structure as the industrial-size cell showed that the catalytic activity of fuel electrode for H2O electrolysis was 9 times higher than that for CO2 electrolysis and this huge difference might be the main cause of the different activation resistance (Ract) and thus different Rtot behavior of H2O electrolysis and CO2 electrolysis. The appearance of Rtot summit can be regarded as the signal of dominance of CO2 electrochemical reduction during co-electrolysis. Based on the position of Rtot summit and the impedance spectroscopy (EIS) results, the reaction mechanism of co-electrolysis was explored and it was found H2O electrolysis dominated at small current density and CO2 electrolysis gradually occurred and dominated with the increase of current density. Besides, H2 concentration in the inlet showed a more profound impact on the reaction mechanism of co-electrolysis compared to CO2 concentration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马马马完成签到,获得积分20
刚刚
1秒前
2秒前
aaaabc完成签到 ,获得积分10
2秒前
159757完成签到,获得积分10
3秒前
坦率紫烟发布了新的文献求助10
3秒前
张大宝完成签到,获得积分10
4秒前
4秒前
毛豆应助周百成采纳,获得10
4秒前
害羞的雪萍完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
褪山海发布了新的文献求助10
5秒前
6秒前
7秒前
xixi发布了新的文献求助10
7秒前
wo发布了新的文献求助10
7秒前
张张发布了新的文献求助100
8秒前
Akim应助ygl0217采纳,获得10
10秒前
11秒前
wrn完成签到,获得积分10
11秒前
飞飞飞123发布了新的文献求助30
11秒前
善学以致用应助快乐小子采纳,获得10
12秒前
周百成完成签到,获得积分10
13秒前
13秒前
马马马发布了新的文献求助10
14秒前
辰月贰拾发布了新的文献求助10
14秒前
wo完成签到,获得积分10
15秒前
松柏完成签到 ,获得积分10
15秒前
星星应助一步一步0617采纳,获得10
15秒前
16秒前
cccc发布了新的文献求助10
16秒前
王闪闪完成签到,获得积分10
16秒前
17秒前
Hover完成签到 ,获得积分10
18秒前
充电宝应助文静采纳,获得10
19秒前
Zhou发布了新的文献求助10
20秒前
lzc完成签到 ,获得积分10
20秒前
Yuki完成签到,获得积分10
21秒前
tooty发布了新的文献求助10
21秒前
22秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2998259
求助须知:如何正确求助?哪些是违规求助? 2658819
关于积分的说明 7197938
捐赠科研通 2294325
什么是DOI,文献DOI怎么找? 1216550
科研通“疑难数据库(出版商)”最低求助积分说明 593547
版权声明 592904