亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Modal Transformer with Global-Local Alignment for Composed Query Image Retrieval

计算机科学 图像检索 嵌入 变压器 人工智能 查询扩展 编码器 模式识别(心理学) 计算机视觉 图像(数学) 情报检索 量子力学 操作系统 物理 电压
作者
Yahui Xu,Yi Bin,Jiwei Wei,Yang Yang,Guoqing Wang,Heng Tao Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8346-8357 被引量:15
标识
DOI:10.1109/tmm.2023.3235495
摘要

In this paper, we study the composed query image retrieval, which aims at retrieving the target image similar to the composed query, i.e., a reference image and the desired modification text. Compared with conventional image retrieval, this task is more challenging as it not only requires precisely aligning the composed query and target image in a common embedding space, but also simultaneously extracting related information from the reference image and modification text. In order to properly extract related information from the composed query, existing methods usually embed vision-language inputs using different feature encoders, e.g., CNN for images and LSTM/BERT for text, and then employ a complicated manually-designed composition module for learning the joint image-text representation. However, the architecture discrepancy in feature encoders would restrict the vision-language plenitudinous interaction. Meanwhile, certain complicated composition designs might significantly hamper the generalization ability of the model. To tackle these problems, we propose a new framework termed ComqueryFormer, which effectively processes the composed query with the Transformer for this task. Specifically, to eliminate the architecture discrepancy, we leverage a unified transformer-based architecture to homogeneously encode the vision-language inputs. Meanwhile, instead of the complicated composition module, the neat yet effective cross-modal transformer is adopted to hierarchically fuse the composed query at various vision scales. On the other hand, we introduce an efficient global-local alignment module to narrow the distance between the composed query and the target image. It not only considers the divergence in the global joint embedding space but also forces the model to focus on the local detail differences. Extensive experiments on three real-world datasets demonstrate the superiority of our ComqueryFormer. Our code can be found at: https://github.com/uestc-xyh/ComqueryFormer .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助五香采纳,获得10
10秒前
19秒前
39秒前
五香发布了新的文献求助10
46秒前
星辰大海应助五香采纳,获得10
56秒前
充电宝应助GYQ采纳,获得10
57秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
GYQ发布了新的文献求助10
1分钟前
GYQ完成签到,获得积分10
1分钟前
淡定的雁玉完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助兴奋的嘉懿采纳,获得10
2分钟前
2分钟前
祖之微笑发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
祖之微笑发布了新的文献求助10
3分钟前
简因完成签到 ,获得积分10
3分钟前
英姑应助苹果果汁采纳,获得30
3分钟前
kaka完成签到,获得积分10
4分钟前
4分钟前
Jason发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小乘号子发布了新的文献求助10
4分钟前
5分钟前
5分钟前
5分钟前
子平完成签到 ,获得积分0
5分钟前
科研通AI5应助哲别采纳,获得10
5分钟前
gszy1975完成签到,获得积分10
5分钟前
小乘号子发布了新的文献求助10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204771
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629