亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Modal Transformer with Global-Local Alignment for Composed Query Image Retrieval

计算机科学 图像检索 嵌入 变压器 人工智能 查询扩展 编码器 模式识别(心理学) 计算机视觉 图像(数学) 情报检索 物理 量子力学 电压 操作系统
作者
Yahui Xu,Yi Bin,Jiwei Wei,Yang Yang,Guoqing Wang,Heng Tao Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8346-8357 被引量:15
标识
DOI:10.1109/tmm.2023.3235495
摘要

In this paper, we study the composed query image retrieval, which aims at retrieving the target image similar to the composed query, i.e., a reference image and the desired modification text. Compared with conventional image retrieval, this task is more challenging as it not only requires precisely aligning the composed query and target image in a common embedding space, but also simultaneously extracting related information from the reference image and modification text. In order to properly extract related information from the composed query, existing methods usually embed vision-language inputs using different feature encoders, e.g., CNN for images and LSTM/BERT for text, and then employ a complicated manually-designed composition module for learning the joint image-text representation. However, the architecture discrepancy in feature encoders would restrict the vision-language plenitudinous interaction. Meanwhile, certain complicated composition designs might significantly hamper the generalization ability of the model. To tackle these problems, we propose a new framework termed ComqueryFormer, which effectively processes the composed query with the Transformer for this task. Specifically, to eliminate the architecture discrepancy, we leverage a unified transformer-based architecture to homogeneously encode the vision-language inputs. Meanwhile, instead of the complicated composition module, the neat yet effective cross-modal transformer is adopted to hierarchically fuse the composed query at various vision scales. On the other hand, we introduce an efficient global-local alignment module to narrow the distance between the composed query and the target image. It not only considers the divergence in the global joint embedding space but also forces the model to focus on the local detail differences. Extensive experiments on three real-world datasets demonstrate the superiority of our ComqueryFormer. Our code can be found at: https://github.com/uestc-xyh/ComqueryFormer .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jiaru发布了新的文献求助10
7秒前
犹豫的踏歌完成签到,获得积分10
14秒前
25秒前
wanci应助科研通管家采纳,获得10
28秒前
gugugaga发布了新的文献求助10
32秒前
Jiaru完成签到,获得积分20
45秒前
zz完成签到,获得积分10
46秒前
情怀应助ZL采纳,获得30
1分钟前
量子星尘发布了新的文献求助150
1分钟前
小二郎应助敏敏9813采纳,获得30
1分钟前
ZL完成签到,获得积分10
1分钟前
merrylake完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
敏敏9813发布了新的文献求助30
2分钟前
敏敏9813完成签到,获得积分10
3分钟前
PengDai完成签到,获得积分10
3分钟前
3分钟前
灰灰喵完成签到 ,获得积分10
3分钟前
PengDai发布了新的文献求助10
3分钟前
neversay4ever完成签到 ,获得积分10
3分钟前
4分钟前
Jasper应助科研通管家采纳,获得50
4分钟前
桐桐应助鲜艳的靖雁采纳,获得10
4分钟前
吉安娜完成签到,获得积分10
4分钟前
最落幕完成签到 ,获得积分10
4分钟前
6分钟前
kokishi完成签到,获得积分10
6分钟前
白云发布了新的文献求助10
6分钟前
RR完成签到 ,获得积分10
7分钟前
7分钟前
饱满的醉薇完成签到,获得积分10
7分钟前
mark完成签到,获得积分10
7分钟前
7分钟前
Fairy发布了新的文献求助10
7分钟前
胖小羊完成签到 ,获得积分10
8分钟前
Fairy完成签到,获得积分10
8分钟前
Perry完成签到,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5245565
求助须知:如何正确求助?哪些是违规求助? 4410920
关于积分的说明 13728857
捐赠科研通 4281266
什么是DOI,文献DOI怎么找? 2349066
邀请新用户注册赠送积分活动 1346155
关于科研通互助平台的介绍 1305017