Multi-Modal Transformer with Global-Local Alignment for Composed Query Image Retrieval

计算机科学 图像检索 嵌入 变压器 人工智能 查询扩展 编码器 模式识别(心理学) 计算机视觉 图像(数学) 情报检索 物理 量子力学 电压 操作系统
作者
Yahui Xu,Yi Bin,Jiwei Wei,Yang Yang,Guoqing Wang,Heng Tao Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8346-8357 被引量:15
标识
DOI:10.1109/tmm.2023.3235495
摘要

In this paper, we study the composed query image retrieval, which aims at retrieving the target image similar to the composed query, i.e., a reference image and the desired modification text. Compared with conventional image retrieval, this task is more challenging as it not only requires precisely aligning the composed query and target image in a common embedding space, but also simultaneously extracting related information from the reference image and modification text. In order to properly extract related information from the composed query, existing methods usually embed vision-language inputs using different feature encoders, e.g., CNN for images and LSTM/BERT for text, and then employ a complicated manually-designed composition module for learning the joint image-text representation. However, the architecture discrepancy in feature encoders would restrict the vision-language plenitudinous interaction. Meanwhile, certain complicated composition designs might significantly hamper the generalization ability of the model. To tackle these problems, we propose a new framework termed ComqueryFormer, which effectively processes the composed query with the Transformer for this task. Specifically, to eliminate the architecture discrepancy, we leverage a unified transformer-based architecture to homogeneously encode the vision-language inputs. Meanwhile, instead of the complicated composition module, the neat yet effective cross-modal transformer is adopted to hierarchically fuse the composed query at various vision scales. On the other hand, we introduce an efficient global-local alignment module to narrow the distance between the composed query and the target image. It not only considers the divergence in the global joint embedding space but also forces the model to focus on the local detail differences. Extensive experiments on three real-world datasets demonstrate the superiority of our ComqueryFormer. Our code can be found at: https://github.com/uestc-xyh/ComqueryFormer .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小崔读研完成签到 ,获得积分10
1秒前
1秒前
今天动脑筋了吗完成签到,获得积分20
1秒前
2秒前
2秒前
无解发布了新的文献求助10
2秒前
高贵花瓣应助桑榆非晚采纳,获得10
2秒前
研友_LOoomL发布了新的文献求助10
3秒前
aa完成签到,获得积分10
3秒前
敏感时光完成签到,获得积分10
4秒前
爆米花应助椒盐柠檬茶采纳,获得10
4秒前
5秒前
xiong完成签到 ,获得积分10
5秒前
高高小凝发布了新的文献求助10
6秒前
nenoaowu发布了新的文献求助10
6秒前
苗苗发布了新的文献求助10
6秒前
敏感时光发布了新的文献求助10
6秒前
打打应助zyj123采纳,获得10
6秒前
逆境完成签到,获得积分10
7秒前
7秒前
科目三应助巧乐兹采纳,获得10
8秒前
8秒前
风中的善愁完成签到,获得积分10
8秒前
9秒前
9秒前
椒盐柠檬茶完成签到,获得积分10
11秒前
空溟fever完成签到,获得积分10
11秒前
12秒前
12秒前
这橘稳了完成签到 ,获得积分10
13秒前
13秒前
michaelvin发布了新的文献求助20
13秒前
sjc发布了新的文献求助10
14秒前
15秒前
肖圣凯发布了新的文献求助10
16秒前
wanghao完成签到 ,获得积分10
16秒前
脑洞疼应助研友_LOoomL采纳,获得10
18秒前
香蕉觅云应助Max采纳,获得10
18秒前
诶呀发布了新的文献求助20
20秒前
矮小的觅云完成签到 ,获得积分10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243165
求助须知:如何正确求助?哪些是违规求助? 2887135
关于积分的说明 8246772
捐赠科研通 2555721
什么是DOI,文献DOI怎么找? 1383867
科研通“疑难数据库(出版商)”最低求助积分说明 649767
邀请新用户注册赠送积分活动 625635