Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation

人工智能 计算机科学 卷积神经网络 分割 鉴别器 眼底(子宫) 模式识别(心理学) 深度学习 翻译(生物学) 计算机视觉 医学 放射科 电信 探测器 基因 信使核糖核酸 生物化学 化学
作者
Kun Huang,Mingchao Li,Jiale Yu,Jinxin Miao,Zizhong Hu,Songtao Yuan,Qiang Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:229: 107306-107306 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107306
摘要

Fundus fluorescein angiography (FFA) is widely used in clinical ophthalmic diagnosis and treatment with the requirement of adverse fluorescent dyes injection. Recently, many deep Convolutional Neural Network(CNN)-based methods have been proposed to estimate FFA from color fundus (CF) images to eliminate the use of adverse fluorescent dyes. However, the robustness of these methods is affected by pathological changes.In this work, we present a CNN-based approach, lesion-aware generative adversarial networks (LA-GAN), to enhance the visual effect of lesion characteristics in the generated FFA images. First, we lead the generator notice lesion information by joint learning with lesion region segmentation. A new hierarchical correlation multi-task framework for high-resolution images is designed. Second, to enhance the visual contrast between normal regions and lesion regions, a newly designed region-level adversarial loss is used rather than the image-level adversarial loss. The code is publicly available at: https://github.com/nicetomeetu21/LA-GAN.The effectiveness of LA-Net has been verified in data with branch retinal vein occlusion. The proposed model reported as measures of generation performance a mean structural similarity (SSIM) of 0.536, mean learned perceptual image patch similarity (LPIPS) 0.312, outperforming other FFA generation and general image generation methods. Further, due to the proposed multi-task learning framework, the lesion-region segmentation performance was further reported as the mean Dice increased from 0.714 to 0.797 and the mean accuracy increased from 0.873 to 0.905, outperforming general single-task image segmentation methods.The results show that the visual effect of lesion characteristics can be improved by employing the region-level adversarial loss and the hierarchical correlation multi-task framework respectively. Based on the results of comparison with the state-of-the-art methods, LA-GAN is not only effective for CF-to-FFA translation, but also effective for lesion-region segmentation. Thus, it may be used for various image translation and lesion segmentation tasks in future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
独特的从露完成签到,获得积分10
1秒前
tongttt完成签到,获得积分10
1秒前
lunlun完成签到,获得积分10
2秒前
爆米花应助与非采纳,获得10
2秒前
2秒前
whc121完成签到,获得积分10
3秒前
wxs完成签到,获得积分10
3秒前
汉堡包应助标致的冷梅采纳,获得10
3秒前
绿L完成签到,获得积分10
3秒前
脑洞疼应助遇见采纳,获得10
4秒前
喜悦小土豆完成签到,获得积分10
4秒前
今后应助独特的从露采纳,获得10
5秒前
5秒前
5秒前
5秒前
田様应助yfn采纳,获得10
5秒前
脑洞疼应助wtl采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
所所应助沉潜采纳,获得10
6秒前
6秒前
故意的黄豆豆完成签到,获得积分10
7秒前
April完成签到 ,获得积分10
7秒前
可爱的函函应助黑胡椒采纳,获得30
7秒前
科研通AI6应助风轩轩采纳,获得10
8秒前
能干蜜蜂发布了新的文献求助10
8秒前
隐形曼青应助yr888采纳,获得10
9秒前
liu.lzy完成签到,获得积分10
9秒前
Honahlee发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836