Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation

人工智能 计算机科学 卷积神经网络 分割 鉴别器 眼底(子宫) 模式识别(心理学) 深度学习 翻译(生物学) 计算机视觉 医学 放射科 电信 探测器 基因 信使核糖核酸 生物化学 化学
作者
Kun Huang,Mingchao Li,Jiale Yu,Jinxin Miao,Zizhong Hu,Songtao Yuan,Qiang Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:229: 107306-107306 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107306
摘要

Fundus fluorescein angiography (FFA) is widely used in clinical ophthalmic diagnosis and treatment with the requirement of adverse fluorescent dyes injection. Recently, many deep Convolutional Neural Network(CNN)-based methods have been proposed to estimate FFA from color fundus (CF) images to eliminate the use of adverse fluorescent dyes. However, the robustness of these methods is affected by pathological changes.In this work, we present a CNN-based approach, lesion-aware generative adversarial networks (LA-GAN), to enhance the visual effect of lesion characteristics in the generated FFA images. First, we lead the generator notice lesion information by joint learning with lesion region segmentation. A new hierarchical correlation multi-task framework for high-resolution images is designed. Second, to enhance the visual contrast between normal regions and lesion regions, a newly designed region-level adversarial loss is used rather than the image-level adversarial loss. The code is publicly available at: https://github.com/nicetomeetu21/LA-GAN.The effectiveness of LA-Net has been verified in data with branch retinal vein occlusion. The proposed model reported as measures of generation performance a mean structural similarity (SSIM) of 0.536, mean learned perceptual image patch similarity (LPIPS) 0.312, outperforming other FFA generation and general image generation methods. Further, due to the proposed multi-task learning framework, the lesion-region segmentation performance was further reported as the mean Dice increased from 0.714 to 0.797 and the mean accuracy increased from 0.873 to 0.905, outperforming general single-task image segmentation methods.The results show that the visual effect of lesion characteristics can be improved by employing the region-level adversarial loss and the hierarchical correlation multi-task framework respectively. Based on the results of comparison with the state-of-the-art methods, LA-GAN is not only effective for CF-to-FFA translation, but also effective for lesion-region segmentation. Thus, it may be used for various image translation and lesion segmentation tasks in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助滕侑林采纳,获得10
刚刚
Akim应助orange9采纳,获得10
1秒前
瞬间发布了新的文献求助10
2秒前
浅尝离白应助年轻芷烟采纳,获得30
2秒前
lynn完成签到,获得积分20
3秒前
云淡风清完成签到,获得积分10
3秒前
4秒前
Ava应助hxl采纳,获得10
4秒前
jituher发布了新的文献求助30
4秒前
4秒前
4秒前
5秒前
6秒前
汉堡包应助zhangxr采纳,获得10
6秒前
jz发布了新的文献求助10
6秒前
科研通AI2S应助wxl采纳,获得10
6秒前
7秒前
李爱国应助King采纳,获得10
7秒前
科研小白完成签到,获得积分10
7秒前
7秒前
华仔应助jituher采纳,获得30
7秒前
8秒前
orange9完成签到,获得积分10
8秒前
ZXT完成签到 ,获得积分10
8秒前
10秒前
研玲发布了新的文献求助10
10秒前
小马甲应助刘阳采纳,获得10
11秒前
11秒前
11秒前
orange9发布了新的文献求助10
12秒前
Hello应助hgq采纳,获得10
12秒前
qianmo完成签到,获得积分10
12秒前
13秒前
好好完成签到,获得积分10
13秒前
zzz完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
jz完成签到,获得积分10
13秒前
李爱国应助小熊维尼采纳,获得10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144274
求助须知:如何正确求助?哪些是违规求助? 2795879
关于积分的说明 7816861
捐赠科研通 2451946
什么是DOI,文献DOI怎么找? 1304774
科研通“疑难数据库(出版商)”最低求助积分说明 627291
版权声明 601419