已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation

人工智能 计算机科学 卷积神经网络 分割 鉴别器 眼底(子宫) 模式识别(心理学) 深度学习 翻译(生物学) 计算机视觉 医学 放射科 电信 探测器 基因 信使核糖核酸 生物化学 化学
作者
Kun Huang,Mingchao Li,Jiale Yu,Jinxin Miao,Zizhong Hu,Songtao Yuan,Qiang Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:229: 107306-107306 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107306
摘要

Fundus fluorescein angiography (FFA) is widely used in clinical ophthalmic diagnosis and treatment with the requirement of adverse fluorescent dyes injection. Recently, many deep Convolutional Neural Network(CNN)-based methods have been proposed to estimate FFA from color fundus (CF) images to eliminate the use of adverse fluorescent dyes. However, the robustness of these methods is affected by pathological changes.In this work, we present a CNN-based approach, lesion-aware generative adversarial networks (LA-GAN), to enhance the visual effect of lesion characteristics in the generated FFA images. First, we lead the generator notice lesion information by joint learning with lesion region segmentation. A new hierarchical correlation multi-task framework for high-resolution images is designed. Second, to enhance the visual contrast between normal regions and lesion regions, a newly designed region-level adversarial loss is used rather than the image-level adversarial loss. The code is publicly available at: https://github.com/nicetomeetu21/LA-GAN.The effectiveness of LA-Net has been verified in data with branch retinal vein occlusion. The proposed model reported as measures of generation performance a mean structural similarity (SSIM) of 0.536, mean learned perceptual image patch similarity (LPIPS) 0.312, outperforming other FFA generation and general image generation methods. Further, due to the proposed multi-task learning framework, the lesion-region segmentation performance was further reported as the mean Dice increased from 0.714 to 0.797 and the mean accuracy increased from 0.873 to 0.905, outperforming general single-task image segmentation methods.The results show that the visual effect of lesion characteristics can be improved by employing the region-level adversarial loss and the hierarchical correlation multi-task framework respectively. Based on the results of comparison with the state-of-the-art methods, LA-GAN is not only effective for CF-to-FFA translation, but also effective for lesion-region segmentation. Thus, it may be used for various image translation and lesion segmentation tasks in future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯柯啦啦发布了新的文献求助10
2秒前
李健的小迷弟应助qqqq采纳,获得10
3秒前
隐形的若灵完成签到,获得积分10
5秒前
5秒前
fufu发布了新的文献求助10
6秒前
addd发布了新的文献求助10
10秒前
斯文钢笔完成签到 ,获得积分10
11秒前
qiao完成签到 ,获得积分10
15秒前
廷聿完成签到,获得积分10
16秒前
九黎完成签到 ,获得积分10
17秒前
li发布了新的文献求助10
18秒前
柯柯啦啦完成签到,获得积分10
18秒前
addd完成签到,获得积分10
19秒前
景C完成签到 ,获得积分10
22秒前
王富贵完成签到,获得积分10
23秒前
寒梅恋雪完成签到 ,获得积分10
23秒前
XiaoliangXue完成签到,获得积分20
24秒前
fufu完成签到,获得积分10
24秒前
无限猫咪完成签到,获得积分10
25秒前
科研通AI6应助无限猫咪采纳,获得10
31秒前
昵称完成签到,获得积分0
33秒前
35秒前
斯文败类应助科研通管家采纳,获得10
37秒前
今后应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
顾矜应助科研通管家采纳,获得10
37秒前
华仔应助科研通管家采纳,获得10
37秒前
38秒前
moon完成签到 ,获得积分10
38秒前
子车茗应助望远Arena采纳,获得30
39秒前
临子完成签到,获得积分10
43秒前
111完成签到 ,获得积分10
44秒前
小龙完成签到,获得积分10
46秒前
47秒前
奋斗慕凝完成签到 ,获得积分10
48秒前
英俊的铭应助杨杨杨采纳,获得10
53秒前
小姚姚完成签到,获得积分10
53秒前
Neyou发布了新的文献求助10
53秒前
纪富完成签到 ,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616976
求助须知:如何正确求助?哪些是违规求助? 4701321
关于积分的说明 14913230
捐赠科研通 4747317
什么是DOI,文献DOI怎么找? 2549156
邀请新用户注册赠送积分活动 1512289
关于科研通互助平台的介绍 1474049