亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation

人工智能 计算机科学 卷积神经网络 分割 鉴别器 眼底(子宫) 模式识别(心理学) 深度学习 翻译(生物学) 计算机视觉 医学 放射科 电信 探测器 基因 信使核糖核酸 生物化学 化学
作者
Kun Huang,Mingchao Li,Jiale Yu,Jinxin Miao,Zizhong Hu,Songtao Yuan,Qiang Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:229: 107306-107306 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107306
摘要

Fundus fluorescein angiography (FFA) is widely used in clinical ophthalmic diagnosis and treatment with the requirement of adverse fluorescent dyes injection. Recently, many deep Convolutional Neural Network(CNN)-based methods have been proposed to estimate FFA from color fundus (CF) images to eliminate the use of adverse fluorescent dyes. However, the robustness of these methods is affected by pathological changes.In this work, we present a CNN-based approach, lesion-aware generative adversarial networks (LA-GAN), to enhance the visual effect of lesion characteristics in the generated FFA images. First, we lead the generator notice lesion information by joint learning with lesion region segmentation. A new hierarchical correlation multi-task framework for high-resolution images is designed. Second, to enhance the visual contrast between normal regions and lesion regions, a newly designed region-level adversarial loss is used rather than the image-level adversarial loss. The code is publicly available at: https://github.com/nicetomeetu21/LA-GAN.The effectiveness of LA-Net has been verified in data with branch retinal vein occlusion. The proposed model reported as measures of generation performance a mean structural similarity (SSIM) of 0.536, mean learned perceptual image patch similarity (LPIPS) 0.312, outperforming other FFA generation and general image generation methods. Further, due to the proposed multi-task learning framework, the lesion-region segmentation performance was further reported as the mean Dice increased from 0.714 to 0.797 and the mean accuracy increased from 0.873 to 0.905, outperforming general single-task image segmentation methods.The results show that the visual effect of lesion characteristics can be improved by employing the region-level adversarial loss and the hierarchical correlation multi-task framework respectively. Based on the results of comparison with the state-of-the-art methods, LA-GAN is not only effective for CF-to-FFA translation, but also effective for lesion-region segmentation. Thus, it may be used for various image translation and lesion segmentation tasks in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
刚刚
HTniconico完成签到 ,获得积分10
8秒前
开朗白山完成签到,获得积分10
11秒前
15秒前
jingluo发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
22秒前
彭于晏应助hhh采纳,获得10
26秒前
我主沉浮完成签到,获得积分10
26秒前
27秒前
嘻嘻哈哈应助abc采纳,获得10
28秒前
30秒前
八两发布了新的文献求助10
34秒前
34秒前
34秒前
35秒前
35秒前
36秒前
36秒前
37秒前
37秒前
37秒前
117完成签到,获得积分10
39秒前
hhh发布了新的文献求助10
39秒前
hhh发布了新的文献求助10
40秒前
hhh发布了新的文献求助10
40秒前
hhh发布了新的文献求助10
40秒前
可爱玫瑰发布了新的文献求助10
42秒前
浮游应助inin采纳,获得10
43秒前
1分钟前
西柚柠檬完成签到 ,获得积分10
1分钟前
梓镱儿完成签到,获得积分10
1分钟前
Aulorra完成签到,获得积分20
1分钟前
1分钟前
久久丫完成签到 ,获得积分10
1分钟前
1分钟前
科目三应助zy采纳,获得10
1分钟前
1分钟前
可爱玫瑰完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164