Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation

人工智能 计算机科学 卷积神经网络 分割 鉴别器 眼底(子宫) 模式识别(心理学) 深度学习 翻译(生物学) 计算机视觉 医学 放射科 探测器 电信 生物化学 化学 信使核糖核酸 基因
作者
Kun Huang,Mingchao Li,Jiale Yu,Jinxin Miao,Zizhong Hu,Songtao Yuan,Qiang Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107306-107306 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107306
摘要

Fundus fluorescein angiography (FFA) is widely used in clinical ophthalmic diagnosis and treatment with the requirement of adverse fluorescent dyes injection. Recently, many deep Convolutional Neural Network(CNN)-based methods have been proposed to estimate FFA from color fundus (CF) images to eliminate the use of adverse fluorescent dyes. However, the robustness of these methods is affected by pathological changes.In this work, we present a CNN-based approach, lesion-aware generative adversarial networks (LA-GAN), to enhance the visual effect of lesion characteristics in the generated FFA images. First, we lead the generator notice lesion information by joint learning with lesion region segmentation. A new hierarchical correlation multi-task framework for high-resolution images is designed. Second, to enhance the visual contrast between normal regions and lesion regions, a newly designed region-level adversarial loss is used rather than the image-level adversarial loss. The code is publicly available at: https://github.com/nicetomeetu21/LA-GAN.The effectiveness of LA-Net has been verified in data with branch retinal vein occlusion. The proposed model reported as measures of generation performance a mean structural similarity (SSIM) of 0.536, mean learned perceptual image patch similarity (LPIPS) 0.312, outperforming other FFA generation and general image generation methods. Further, due to the proposed multi-task learning framework, the lesion-region segmentation performance was further reported as the mean Dice increased from 0.714 to 0.797 and the mean accuracy increased from 0.873 to 0.905, outperforming general single-task image segmentation methods.The results show that the visual effect of lesion characteristics can be improved by employing the region-level adversarial loss and the hierarchical correlation multi-task framework respectively. Based on the results of comparison with the state-of-the-art methods, LA-GAN is not only effective for CF-to-FFA translation, but also effective for lesion-region segmentation. Thus, it may be used for various image translation and lesion segmentation tasks in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwl完成签到,获得积分10
1秒前
丘比特应助东C东C采纳,获得10
1秒前
wjx发布了新的文献求助100
1秒前
完美世界应助goo采纳,获得10
1秒前
2秒前
七个小矮人完成签到,获得积分10
2秒前
41发布了新的文献求助10
2秒前
啊啊大完成签到,获得积分10
2秒前
无花果应助seven采纳,获得10
3秒前
Michael完成签到,获得积分10
3秒前
3秒前
Violette完成签到 ,获得积分10
4秒前
留胡子的文轩完成签到 ,获得积分10
5秒前
5秒前
lzzj完成签到,获得积分10
5秒前
jyy完成签到 ,获得积分10
5秒前
柠檬发布了新的文献求助20
5秒前
bobo发布了新的文献求助10
6秒前
漂亮蘑菇完成签到,获得积分10
6秒前
浮游应助geoman采纳,获得10
6秒前
phy发布了新的文献求助10
6秒前
对潇潇暮雨完成签到 ,获得积分10
6秒前
朱道斌发布了新的文献求助10
6秒前
7秒前
丘比特应助lwj6855采纳,获得10
7秒前
蛋蛋发布了新的文献求助10
8秒前
41完成签到,获得积分10
8秒前
长孙易梦完成签到,获得积分10
8秒前
田様应助苏su采纳,获得10
8秒前
桐桐应助韩天宇采纳,获得10
8秒前
张张张哈哈哈完成签到,获得积分10
8秒前
杨惠文完成签到,获得积分20
9秒前
9秒前
贰鸟应助四九_采纳,获得10
9秒前
9秒前
wyw完成签到 ,获得积分10
9秒前
Yangbingang完成签到,获得积分10
10秒前
wjx发布了新的文献求助150
10秒前
搞搞学术吧完成签到,获得积分10
10秒前
caicai发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599915
求助须知:如何正确求助?哪些是违规求助? 4010315
关于积分的说明 12415771
捐赠科研通 3690073
什么是DOI,文献DOI怎么找? 2034106
邀请新用户注册赠送积分活动 1067453
科研通“疑难数据库(出版商)”最低求助积分说明 952401