Traffic Flow Prediction Based on Spatiotemporal Potential Energy Fields

计算机科学 空间分析 数据挖掘 组分(热力学) 领域(数学) 网格 主成分分析 自相关 流量(计算机网络) 人工智能 遥感 数学 统计 物理 热力学 地质学 计算机安全 纯数学 几何学
作者
Jingyuan Wang,Jiahao Ji,Zhe Jiang,Leilei Sun
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (9): 9073-9087 被引量:11
标识
DOI:10.1109/tkde.2022.3221183
摘要

Traffic flow prediction is a fundamental problem in spatiotemporal data mining. Most of the existing studies focuses on designing statistical models to fit historical traffic data, which are purely data-driven approaches and fail to reveal the underlying mechanisms of urban traffic. To address this issue, we propose the spatiotemporal potential energy field model (ST-PEF+), which applies the field theory for human mobility to interpret the underlying mechanisms of urban traffic, and introduces the theory into data-driven deep learning models. ST-PEF+ consists of a PEF extraction module and a data-driven module. Inspired by the field theory for human mobility, the PEF extraction module adopts an algorithm to decompose the grid-based traffic flow graph into several polytree-based potential energy fields (PEFs), where traffic flows from high potential locations to low potential locations, just as water is driven by the gravity field. We also provide a theoretical analysis to ensure that the polytree decomposition algorithm can decompose any traffic flow graph. In the data-driven module, ST-PEF+ learns a spatiotemporal deep learning model to predict the dynamics of PEFs. The model adopts correlation-adaptive neural network structures, which consists of a temporal component for temporal correlations and a spatial component for spatial correlations. The temporal component employs a GRU and DCN combined structure to capture both short-term autocorrelation and long-term repeating patterns of PEFs. The spatial component extends the GAT using weighted directed attention to model the asymmetric spatial structure in PEFs. The prediction results of traffic flow are finally derived from PEFs that are predicted by the spatiotemporal deep learning model. We conduct extensive evaluations on three real-world traffic datasets. The results show that our model outperforms the state-of-the-art baselines. In addition, case studies confirm that the PEFs learned in our framework can reveal the underlying mechanisms of urban traffic, thus improving the model interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘刘完成签到,获得积分10
刚刚
刚刚
刚刚
哈哈哈哈哈哈哈完成签到 ,获得积分10
1秒前
蹦蹦完成签到,获得积分10
1秒前
惟珦发布了新的文献求助10
2秒前
2秒前
科研通AI5应助Tony Smith采纳,获得10
2秒前
000发布了新的文献求助10
5秒前
阿九发布了新的文献求助10
5秒前
5秒前
科目三应助周鑫采纳,获得10
6秒前
脑洞疼应助机智若雁采纳,获得10
6秒前
ZMK发布了新的文献求助10
6秒前
情怀应助科研小白采纳,获得10
8秒前
内向苡完成签到,获得积分10
8秒前
喜悦的莹发布了新的文献求助10
8秒前
bkagyin应助努力学习采纳,获得10
9秒前
知菡发布了新的文献求助10
10秒前
shenqian发布了新的文献求助10
10秒前
汉堡包应助小全采纳,获得10
10秒前
华仔应助oy采纳,获得10
10秒前
小李在哪儿完成签到 ,获得积分10
12秒前
SYLH应助VDC采纳,获得10
14秒前
zpc发布了新的文献求助30
17秒前
17秒前
Nollet完成签到 ,获得积分10
17秒前
L7.关注了科研通微信公众号
17秒前
18秒前
缥缈的青旋完成签到,获得积分10
18秒前
Lucas应助喜悦的莹采纳,获得10
20秒前
ddd发布了新的文献求助10
20秒前
今后应助LHW采纳,获得30
21秒前
Blank发布了新的文献求助10
21秒前
科研通AI5应助阿九采纳,获得10
23秒前
23秒前
科研通AI5应助科研通管家采纳,获得30
24秒前
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738049
求助须知:如何正确求助?哪些是违规求助? 3281565
关于积分的说明 10026096
捐赠科研通 2998320
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782682
科研通“疑难数据库(出版商)”最低求助积分说明 749882