已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Three-dimensional convolutional neural network model to identify clinically significant prostate cancer in transrectal ultrasound videos: a prospective, multi-institutional, diagnostic study

医学 前列腺癌 前列腺 前列腺切除术 活检 前瞻性队列研究 接收机工作特性 放射科 前列腺活检 队列 泌尿科 磁共振成像 癌症 内科学
作者
Yi-Kang Sun,Boyang Zhou,Yi Miao,Yangyang Shi,Shihao Xu,De Pei Wu,Lei Zhang,Gelin Xu,Tingfan Wu,Lifan Wang,Haohao Yin,Xin Ye,Daru Lu,Hong Han,Li‐Hua Xiang,Xiao Xiang Zhu,Chong‐Ke Zhao,Hui‐Xiong Xu
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:60: 102027-102027 被引量:2
标识
DOI:10.1016/j.eclinm.2023.102027
摘要

Identifying patients with clinically significant prostate cancer (csPCa) before biopsy helps reduce unnecessary biopsies and improve patient prognosis. The diagnostic performance of traditional transrectal ultrasound (TRUS) for csPCa is relatively limited. This study was aimed to develop a high-performance convolutional neural network (CNN) model (P-Net) based on a TRUS video of the entire prostate and investigate its efficacy in identifying csPCa.Between January 2021 and December 2022, this study prospectively evaluated 832 patients from four centres who underwent prostate biopsy and/or radical prostatectomy. All patients had a standardised TRUS video of the whole prostate. A two-dimensional CNN (2D P-Net) and three-dimensional CNN (3D P-Net) were constructed using the training cohort (559 patients) and tested on the internal validation cohort (140 patients) as well as on the external validation cohort (133 patients). The performance of 2D P-Net and 3D P-Net in predicting csPCa was assessed in terms of the area under the receiver operating characteristic curve (AUC), biopsy rate, and unnecessary biopsy rate, and compared with the TRUS 5-point Likert score system as well as multiparametric magnetic resonance imaging (mp-MRI) prostate imaging reporting and data system (PI-RADS) v2.1. Decision curve analyses (DCAs) were used to determine the net benefits associated with their use. The study is registered at https://www.chictr.org.cn with the unique identifier ChiCTR2200064545.The diagnostic performance of 3D P-Net (AUC: 0.85-0.89) was superior to TRUS 5-point Likert score system (AUC: 0.71-0.78, P = 0.003-0.040), and similar to mp-MRI PI-RADS v2.1 score system interpreted by experienced radiologists (AUC: 0.83-0.86, P = 0.460-0.732) and 2D P-Net (AUC: 0.79-0.86, P = 0.066-0.678) in the internal and external validation cohorts. The biopsy rate decreased from 40.3% (TRUS 5-point Likert score system) and 47.6% (mp-MRI PI-RADS v2.1 score system) to 35.5% (2D P-Net) and 34.0% (3D P-Net). The unnecessary biopsy rate decreased from 38.1% (TRUS 5-point Likert score system) and 35.2% (mp-MRI PI-RADS v2.1 score system) to 32.0% (2D P-Net) and 25.8% (3D P-Net). 3D P-Net yielded the highest net benefit according to the DCAs.3D P-Net based on a prostate grayscale TRUS video achieved satisfactory performance in identifying csPCa and potentially reducing unnecessary biopsies. More studies to determine how AI models better integrate into routine practice and randomized controlled trials to show the values of these models in real clinical applications are warranted.The National Natural Science Foundation of China (Grants 82202174 and 82202153), the Science and Technology Commission of Shanghai Municipality (Grants 18441905500 and 19DZ2251100), Shanghai Municipal Health Commission (Grants 2019LJ21 and SHSLCZDZK03502), Shanghai Science and Technology Innovation Action Plan (21Y11911200), and Fundamental Research Funds for the Central Universities (ZD-11-202151), Scientific Research and Development Fund of Zhongshan Hospital of Fudan University (Grant 2022ZSQD07).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂流完成签到,获得积分10
1秒前
felix发布了新的文献求助10
2秒前
felix发布了新的文献求助10
3秒前
zkg关注了科研通微信公众号
4秒前
felix发布了新的文献求助10
4秒前
123应助张张崽采纳,获得10
4秒前
123完成签到,获得积分20
5秒前
感动的醉波关注了科研通微信公众号
5秒前
白鸽鸽发布了新的文献求助10
7秒前
8秒前
123发布了新的文献求助20
8秒前
12秒前
欧克完成签到 ,获得积分10
13秒前
wl1700完成签到,获得积分20
13秒前
14秒前
忧虑的羊发布了新的文献求助10
15秒前
顾矜应助北风采纳,获得10
16秒前
机智柚子发布了新的文献求助10
17秒前
ytrewq发布了新的文献求助10
19秒前
伶俐绿海完成签到 ,获得积分10
20秒前
忧虑的羊完成签到,获得积分10
22秒前
一朵会长树的花完成签到,获得积分10
23秒前
23秒前
NexusExplorer应助123采纳,获得10
23秒前
Ava应助Jeny采纳,获得10
24秒前
26秒前
27秒前
Dean完成签到,获得积分10
28秒前
谷大强发布了新的文献求助10
29秒前
29秒前
sissiarno应助干净的尔岚采纳,获得30
29秒前
123发布了新的文献求助10
30秒前
hyt发布了新的文献求助10
30秒前
30秒前
zn发布了新的文献求助10
31秒前
斑马兽完成签到,获得积分10
32秒前
prosperp应助felix采纳,获得10
32秒前
prosperp应助felix采纳,获得10
32秒前
乐乐应助felix采纳,获得10
33秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307135
求助须知:如何正确求助?哪些是违规求助? 2940891
关于积分的说明 8499375
捐赠科研通 2615081
什么是DOI,文献DOI怎么找? 1428662
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648337