Three-dimensional convolutional neural network model to identify clinically significant prostate cancer in transrectal ultrasound videos: a prospective, multi-institutional, diagnostic study

医学 前列腺癌 前列腺 前列腺切除术 活检 前瞻性队列研究 接收机工作特性 放射科 前列腺活检 队列 泌尿科 磁共振成像 癌症 内科学
作者
Yi-Kang Sun,Boyang Zhou,Yao Miao,Yi-Lei Shi,Shihao Xu,Dao-Ming Wu,Lei Zhang,Guang Xu,Tingfan Wu,Lifan Wang,Haohao Yin,Xin Ye,Dan Lu,Hong Han,Li‐Hua Xiang,Xiao Xiang Zhu,Chong-Ke Zhao,Hui‐Xiong Xu
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:60: 102027-102027 被引量:17
标识
DOI:10.1016/j.eclinm.2023.102027
摘要

Identifying patients with clinically significant prostate cancer (csPCa) before biopsy helps reduce unnecessary biopsies and improve patient prognosis. The diagnostic performance of traditional transrectal ultrasound (TRUS) for csPCa is relatively limited. This study was aimed to develop a high-performance convolutional neural network (CNN) model (P-Net) based on a TRUS video of the entire prostate and investigate its efficacy in identifying csPCa.Between January 2021 and December 2022, this study prospectively evaluated 832 patients from four centres who underwent prostate biopsy and/or radical prostatectomy. All patients had a standardised TRUS video of the whole prostate. A two-dimensional CNN (2D P-Net) and three-dimensional CNN (3D P-Net) were constructed using the training cohort (559 patients) and tested on the internal validation cohort (140 patients) as well as on the external validation cohort (133 patients). The performance of 2D P-Net and 3D P-Net in predicting csPCa was assessed in terms of the area under the receiver operating characteristic curve (AUC), biopsy rate, and unnecessary biopsy rate, and compared with the TRUS 5-point Likert score system as well as multiparametric magnetic resonance imaging (mp-MRI) prostate imaging reporting and data system (PI-RADS) v2.1. Decision curve analyses (DCAs) were used to determine the net benefits associated with their use. The study is registered at https://www.chictr.org.cn with the unique identifier ChiCTR2200064545.The diagnostic performance of 3D P-Net (AUC: 0.85-0.89) was superior to TRUS 5-point Likert score system (AUC: 0.71-0.78, P = 0.003-0.040), and similar to mp-MRI PI-RADS v2.1 score system interpreted by experienced radiologists (AUC: 0.83-0.86, P = 0.460-0.732) and 2D P-Net (AUC: 0.79-0.86, P = 0.066-0.678) in the internal and external validation cohorts. The biopsy rate decreased from 40.3% (TRUS 5-point Likert score system) and 47.6% (mp-MRI PI-RADS v2.1 score system) to 35.5% (2D P-Net) and 34.0% (3D P-Net). The unnecessary biopsy rate decreased from 38.1% (TRUS 5-point Likert score system) and 35.2% (mp-MRI PI-RADS v2.1 score system) to 32.0% (2D P-Net) and 25.8% (3D P-Net). 3D P-Net yielded the highest net benefit according to the DCAs.3D P-Net based on a prostate grayscale TRUS video achieved satisfactory performance in identifying csPCa and potentially reducing unnecessary biopsies. More studies to determine how AI models better integrate into routine practice and randomized controlled trials to show the values of these models in real clinical applications are warranted.The National Natural Science Foundation of China (Grants 82202174 and 82202153), the Science and Technology Commission of Shanghai Municipality (Grants 18441905500 and 19DZ2251100), Shanghai Municipal Health Commission (Grants 2019LJ21 and SHSLCZDZK03502), Shanghai Science and Technology Innovation Action Plan (21Y11911200), and Fundamental Research Funds for the Central Universities (ZD-11-202151), Scientific Research and Development Fund of Zhongshan Hospital of Fudan University (Grant 2022ZSQD07).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助毛啊阿毛采纳,获得10
1秒前
1秒前
CipherSage应助cfy采纳,获得30
1秒前
Butterfly完成签到,获得积分10
1秒前
是苗苗丫完成签到,获得积分10
1秒前
四叶草QQ鱼完成签到 ,获得积分10
1秒前
叶子宁完成签到,获得积分10
1秒前
结实夜雪发布了新的文献求助10
1秒前
无奈孤兰完成签到,获得积分20
2秒前
2秒前
zhutu完成签到,获得积分10
2秒前
阿诱完成签到,获得积分10
2秒前
chruse完成签到,获得积分10
2秒前
ykk关闭了ykk文献求助
2秒前
YZChen完成签到,获得积分10
3秒前
3秒前
3秒前
隐形曼青应助橙子采纳,获得10
3秒前
张静枝完成签到 ,获得积分10
3秒前
Spiderman完成签到,获得积分10
4秒前
RickT发布了新的文献求助10
4秒前
研友_VZGzan完成签到 ,获得积分10
4秒前
4秒前
壮观诗桃关注了科研通微信公众号
4秒前
牛肉汉堡完成签到,获得积分10
5秒前
顺利的夜梦完成签到,获得积分10
5秒前
5秒前
ZZZ发布了新的文献求助10
5秒前
于胜男完成签到,获得积分10
5秒前
Mike完成签到,获得积分10
5秒前
青山发布了新的文献求助10
6秒前
7秒前
7秒前
triumfc发布了新的文献求助10
7秒前
毛啊阿毛完成签到,获得积分10
8秒前
dada0923发布了新的文献求助10
8秒前
YYY05041123发布了新的文献求助10
8秒前
参上完成签到,获得积分10
9秒前
10秒前
科研通AI6应助胖柠檬采纳,获得10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338291
求助须知:如何正确求助?哪些是违规求助? 4475468
关于积分的说明 13928343
捐赠科研通 4370654
什么是DOI,文献DOI怎么找? 2401391
邀请新用户注册赠送积分活动 1394507
关于科研通互助平台的介绍 1366346