亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Three-dimensional convolutional neural network model to identify clinically significant prostate cancer in transrectal ultrasound videos: a prospective, multi-institutional, diagnostic study

医学 前列腺癌 前列腺 前列腺切除术 活检 前瞻性队列研究 接收机工作特性 放射科 前列腺活检 队列 泌尿科 磁共振成像 癌症 内科学
作者
Yi-Kang Sun,Boyang Zhou,Yao Miao,Yi-Lei Shi,Shihao Xu,Dao-Ming Wu,Lei Zhang,Guang Xu,Tingfan Wu,Lifan Wang,Haohao Yin,Xin Ye,Dan Lu,Hong Han,Li‐Hua Xiang,Xiao Xiang Zhu,Chong-Ke Zhao,Hui‐Xiong Xu
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:60: 102027-102027 被引量:17
标识
DOI:10.1016/j.eclinm.2023.102027
摘要

Identifying patients with clinically significant prostate cancer (csPCa) before biopsy helps reduce unnecessary biopsies and improve patient prognosis. The diagnostic performance of traditional transrectal ultrasound (TRUS) for csPCa is relatively limited. This study was aimed to develop a high-performance convolutional neural network (CNN) model (P-Net) based on a TRUS video of the entire prostate and investigate its efficacy in identifying csPCa.Between January 2021 and December 2022, this study prospectively evaluated 832 patients from four centres who underwent prostate biopsy and/or radical prostatectomy. All patients had a standardised TRUS video of the whole prostate. A two-dimensional CNN (2D P-Net) and three-dimensional CNN (3D P-Net) were constructed using the training cohort (559 patients) and tested on the internal validation cohort (140 patients) as well as on the external validation cohort (133 patients). The performance of 2D P-Net and 3D P-Net in predicting csPCa was assessed in terms of the area under the receiver operating characteristic curve (AUC), biopsy rate, and unnecessary biopsy rate, and compared with the TRUS 5-point Likert score system as well as multiparametric magnetic resonance imaging (mp-MRI) prostate imaging reporting and data system (PI-RADS) v2.1. Decision curve analyses (DCAs) were used to determine the net benefits associated with their use. The study is registered at https://www.chictr.org.cn with the unique identifier ChiCTR2200064545.The diagnostic performance of 3D P-Net (AUC: 0.85-0.89) was superior to TRUS 5-point Likert score system (AUC: 0.71-0.78, P = 0.003-0.040), and similar to mp-MRI PI-RADS v2.1 score system interpreted by experienced radiologists (AUC: 0.83-0.86, P = 0.460-0.732) and 2D P-Net (AUC: 0.79-0.86, P = 0.066-0.678) in the internal and external validation cohorts. The biopsy rate decreased from 40.3% (TRUS 5-point Likert score system) and 47.6% (mp-MRI PI-RADS v2.1 score system) to 35.5% (2D P-Net) and 34.0% (3D P-Net). The unnecessary biopsy rate decreased from 38.1% (TRUS 5-point Likert score system) and 35.2% (mp-MRI PI-RADS v2.1 score system) to 32.0% (2D P-Net) and 25.8% (3D P-Net). 3D P-Net yielded the highest net benefit according to the DCAs.3D P-Net based on a prostate grayscale TRUS video achieved satisfactory performance in identifying csPCa and potentially reducing unnecessary biopsies. More studies to determine how AI models better integrate into routine practice and randomized controlled trials to show the values of these models in real clinical applications are warranted.The National Natural Science Foundation of China (Grants 82202174 and 82202153), the Science and Technology Commission of Shanghai Municipality (Grants 18441905500 and 19DZ2251100), Shanghai Municipal Health Commission (Grants 2019LJ21 and SHSLCZDZK03502), Shanghai Science and Technology Innovation Action Plan (21Y11911200), and Fundamental Research Funds for the Central Universities (ZD-11-202151), Scientific Research and Development Fund of Zhongshan Hospital of Fudan University (Grant 2022ZSQD07).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
siv发布了新的文献求助10
27秒前
张喜悦发布了新的文献求助10
40秒前
郝富完成签到,获得积分10
42秒前
wwwjy完成签到 ,获得积分10
48秒前
01完成签到 ,获得积分10
49秒前
1分钟前
1分钟前
1分钟前
Andy.发布了新的文献求助10
1分钟前
Andy.完成签到,获得积分10
1分钟前
自信秋烟完成签到 ,获得积分10
1分钟前
1分钟前
zhengqisong完成签到,获得积分20
1分钟前
zhengqisong发布了新的文献求助10
1分钟前
张喜悦发布了新的文献求助10
2分钟前
2分钟前
科研通AI6应助dd采纳,获得10
2分钟前
Jourmore完成签到,获得积分0
2分钟前
SUN完成签到,获得积分10
2分钟前
SUN发布了新的文献求助10
2分钟前
2分钟前
siv发布了新的文献求助10
2分钟前
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
GingerF应助Mirzat107采纳,获得50
2分钟前
2分钟前
2分钟前
2分钟前
张喜悦发布了新的文献求助10
2分钟前
白华苍松发布了新的文献求助10
2分钟前
jacob258完成签到 ,获得积分10
2分钟前
快乐小菜瓜完成签到 ,获得积分10
3分钟前
火星上向珊完成签到,获得积分10
3分钟前
张喜悦完成签到,获得积分10
3分钟前
siv发布了新的文献求助10
3分钟前
清寒完成签到,获得积分10
3分钟前
德尔塔捱斯完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534189
求助须知:如何正确求助?哪些是违规求助? 4622286
关于积分的说明 14582300
捐赠科研通 4562443
什么是DOI,文献DOI怎么找? 2500169
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450841