Three-dimensional convolutional neural network model to identify clinically significant prostate cancer in transrectal ultrasound videos: a prospective, multi-institutional, diagnostic study

医学 前列腺癌 前列腺 前列腺切除术 活检 前瞻性队列研究 接收机工作特性 放射科 前列腺活检 队列 泌尿科 磁共振成像 癌症 内科学
作者
Yi-Kang Sun,Boyang Zhou,Yao Miao,Yi-Lei Shi,Shihao Xu,Dao-Ming Wu,Lei Zhang,Guang Xu,Tingfan Wu,Lifan Wang,Haohao Yin,Xin Ye,Dan Lu,Hong Han,Li‐Hua Xiang,Xiao Xiang Zhu,Chong-Ke Zhao,Hui‐Xiong Xu
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:60: 102027-102027 被引量:17
标识
DOI:10.1016/j.eclinm.2023.102027
摘要

Identifying patients with clinically significant prostate cancer (csPCa) before biopsy helps reduce unnecessary biopsies and improve patient prognosis. The diagnostic performance of traditional transrectal ultrasound (TRUS) for csPCa is relatively limited. This study was aimed to develop a high-performance convolutional neural network (CNN) model (P-Net) based on a TRUS video of the entire prostate and investigate its efficacy in identifying csPCa.Between January 2021 and December 2022, this study prospectively evaluated 832 patients from four centres who underwent prostate biopsy and/or radical prostatectomy. All patients had a standardised TRUS video of the whole prostate. A two-dimensional CNN (2D P-Net) and three-dimensional CNN (3D P-Net) were constructed using the training cohort (559 patients) and tested on the internal validation cohort (140 patients) as well as on the external validation cohort (133 patients). The performance of 2D P-Net and 3D P-Net in predicting csPCa was assessed in terms of the area under the receiver operating characteristic curve (AUC), biopsy rate, and unnecessary biopsy rate, and compared with the TRUS 5-point Likert score system as well as multiparametric magnetic resonance imaging (mp-MRI) prostate imaging reporting and data system (PI-RADS) v2.1. Decision curve analyses (DCAs) were used to determine the net benefits associated with their use. The study is registered at https://www.chictr.org.cn with the unique identifier ChiCTR2200064545.The diagnostic performance of 3D P-Net (AUC: 0.85-0.89) was superior to TRUS 5-point Likert score system (AUC: 0.71-0.78, P = 0.003-0.040), and similar to mp-MRI PI-RADS v2.1 score system interpreted by experienced radiologists (AUC: 0.83-0.86, P = 0.460-0.732) and 2D P-Net (AUC: 0.79-0.86, P = 0.066-0.678) in the internal and external validation cohorts. The biopsy rate decreased from 40.3% (TRUS 5-point Likert score system) and 47.6% (mp-MRI PI-RADS v2.1 score system) to 35.5% (2D P-Net) and 34.0% (3D P-Net). The unnecessary biopsy rate decreased from 38.1% (TRUS 5-point Likert score system) and 35.2% (mp-MRI PI-RADS v2.1 score system) to 32.0% (2D P-Net) and 25.8% (3D P-Net). 3D P-Net yielded the highest net benefit according to the DCAs.3D P-Net based on a prostate grayscale TRUS video achieved satisfactory performance in identifying csPCa and potentially reducing unnecessary biopsies. More studies to determine how AI models better integrate into routine practice and randomized controlled trials to show the values of these models in real clinical applications are warranted.The National Natural Science Foundation of China (Grants 82202174 and 82202153), the Science and Technology Commission of Shanghai Municipality (Grants 18441905500 and 19DZ2251100), Shanghai Municipal Health Commission (Grants 2019LJ21 and SHSLCZDZK03502), Shanghai Science and Technology Innovation Action Plan (21Y11911200), and Fundamental Research Funds for the Central Universities (ZD-11-202151), Scientific Research and Development Fund of Zhongshan Hospital of Fudan University (Grant 2022ZSQD07).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的曼青关注了科研通微信公众号
1秒前
耶耶完成签到,获得积分10
3秒前
脑洞疼应助zhogwe采纳,获得10
3秒前
5秒前
5秒前
含糊的钢笔完成签到,获得积分10
5秒前
5秒前
大个应助朴实的纸飞机采纳,获得10
5秒前
邓佳鑫Alan应助俊逸青柏采纳,获得10
6秒前
7秒前
8秒前
swich完成签到,获得积分10
9秒前
852应助Bai采纳,获得10
9秒前
所所应助kendrick677采纳,获得10
9秒前
婉孝完成签到,获得积分10
9秒前
深林狼完成签到,获得积分10
10秒前
周传强发布了新的文献求助10
10秒前
一半一半发布了新的文献求助10
11秒前
11秒前
美亲完成签到,获得积分10
11秒前
12秒前
炙热迎波发布了新的文献求助10
12秒前
求助人员发布了新的文献求助10
12秒前
咖啡不加糖完成签到,获得积分10
12秒前
桐桐应助塔塔开采纳,获得10
13秒前
13秒前
cheong完成签到,获得积分10
14秒前
14秒前
英吉利25发布了新的文献求助10
15秒前
meng发布了新的文献求助30
17秒前
17秒前
17秒前
咕咕发布了新的文献求助10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
祁尒发布了新的文献求助10
19秒前
00应助炙热迎波采纳,获得150
19秒前
19秒前
LCX发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243