Three-dimensional convolutional neural network model to identify clinically significant prostate cancer in transrectal ultrasound videos: a prospective, multi-institutional, diagnostic study

医学 前列腺癌 前列腺 前列腺切除术 活检 前瞻性队列研究 接收机工作特性 放射科 前列腺活检 队列 泌尿科 磁共振成像 癌症 内科学
作者
Yi-Kang Sun,Boyang Zhou,Yi Miao,Yangyang Shi,Shihao Xu,De Pei Wu,Lei Zhang,Gelin Xu,Tingfan Wu,Lifan Wang,Haohao Yin,Xin Ye,Daru Lu,Hong Han,Li‐Hua Xiang,Xiao Xiang Zhu,Chong‐Ke Zhao,Hui‐Xiong Xu
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:60: 102027-102027 被引量:2
标识
DOI:10.1016/j.eclinm.2023.102027
摘要

Identifying patients with clinically significant prostate cancer (csPCa) before biopsy helps reduce unnecessary biopsies and improve patient prognosis. The diagnostic performance of traditional transrectal ultrasound (TRUS) for csPCa is relatively limited. This study was aimed to develop a high-performance convolutional neural network (CNN) model (P-Net) based on a TRUS video of the entire prostate and investigate its efficacy in identifying csPCa.Between January 2021 and December 2022, this study prospectively evaluated 832 patients from four centres who underwent prostate biopsy and/or radical prostatectomy. All patients had a standardised TRUS video of the whole prostate. A two-dimensional CNN (2D P-Net) and three-dimensional CNN (3D P-Net) were constructed using the training cohort (559 patients) and tested on the internal validation cohort (140 patients) as well as on the external validation cohort (133 patients). The performance of 2D P-Net and 3D P-Net in predicting csPCa was assessed in terms of the area under the receiver operating characteristic curve (AUC), biopsy rate, and unnecessary biopsy rate, and compared with the TRUS 5-point Likert score system as well as multiparametric magnetic resonance imaging (mp-MRI) prostate imaging reporting and data system (PI-RADS) v2.1. Decision curve analyses (DCAs) were used to determine the net benefits associated with their use. The study is registered at https://www.chictr.org.cn with the unique identifier ChiCTR2200064545.The diagnostic performance of 3D P-Net (AUC: 0.85-0.89) was superior to TRUS 5-point Likert score system (AUC: 0.71-0.78, P = 0.003-0.040), and similar to mp-MRI PI-RADS v2.1 score system interpreted by experienced radiologists (AUC: 0.83-0.86, P = 0.460-0.732) and 2D P-Net (AUC: 0.79-0.86, P = 0.066-0.678) in the internal and external validation cohorts. The biopsy rate decreased from 40.3% (TRUS 5-point Likert score system) and 47.6% (mp-MRI PI-RADS v2.1 score system) to 35.5% (2D P-Net) and 34.0% (3D P-Net). The unnecessary biopsy rate decreased from 38.1% (TRUS 5-point Likert score system) and 35.2% (mp-MRI PI-RADS v2.1 score system) to 32.0% (2D P-Net) and 25.8% (3D P-Net). 3D P-Net yielded the highest net benefit according to the DCAs.3D P-Net based on a prostate grayscale TRUS video achieved satisfactory performance in identifying csPCa and potentially reducing unnecessary biopsies. More studies to determine how AI models better integrate into routine practice and randomized controlled trials to show the values of these models in real clinical applications are warranted.The National Natural Science Foundation of China (Grants 82202174 and 82202153), the Science and Technology Commission of Shanghai Municipality (Grants 18441905500 and 19DZ2251100), Shanghai Municipal Health Commission (Grants 2019LJ21 and SHSLCZDZK03502), Shanghai Science and Technology Innovation Action Plan (21Y11911200), and Fundamental Research Funds for the Central Universities (ZD-11-202151), Scientific Research and Development Fund of Zhongshan Hospital of Fudan University (Grant 2022ZSQD07).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫野狼完成签到 ,获得积分10
刚刚
结实的幽魂完成签到,获得积分10
刚刚
刚刚
1秒前
ddsyg126完成签到,获得积分10
1秒前
大个应助哒哒猪采纳,获得50
1秒前
stars完成签到,获得积分10
1秒前
1秒前
liufumei完成签到,获得积分10
2秒前
试尝胆大应助文龙采纳,获得10
2秒前
852应助踏实十八采纳,获得30
3秒前
合适怡完成签到,获得积分10
3秒前
魏漂亮完成签到,获得积分10
3秒前
可爱的函函应助欢喜藏今采纳,获得10
3秒前
希望天下0贩的0应助Mine采纳,获得10
3秒前
3秒前
鸭鸭完成签到,获得积分10
3秒前
没有神的过往完成签到,获得积分10
4秒前
白_发布了新的文献求助10
4秒前
皮皮狗完成签到 ,获得积分10
5秒前
你坤叔公发布了新的文献求助10
5秒前
内向的惜芹完成签到,获得积分10
5秒前
Proustian发布了新的文献求助10
5秒前
xiaoyao完成签到,获得积分10
6秒前
6秒前
GGBOND完成签到,获得积分10
6秒前
yyj完成签到,获得积分10
7秒前
荼白完成签到 ,获得积分10
7秒前
小王完成签到 ,获得积分10
8秒前
wwwwpy发布了新的文献求助10
8秒前
花誓lydia完成签到 ,获得积分10
8秒前
8秒前
共享精神应助艺心采纳,获得10
9秒前
平平无奇完成签到,获得积分10
9秒前
10秒前
daijk完成签到,获得积分10
10秒前
10秒前
华北走地鸡完成签到,获得积分10
10秒前
猪猪hero发布了新的文献求助30
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926