A novel flat heat pipe for anti-gravity orientations: Leaf fractal evaporator and bi-directional transport capillary channel

材料科学 热管 毛细管作用 传热系数 传热 热阻 机械 热力学 复合材料 物理
作者
Weiwei Wang,Yong-Juan Song,Bin Li,Di Liu,Fu-Yun Zhao,Yang Cai
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:232: 120954-120954 被引量:15
标识
DOI:10.1016/j.applthermaleng.2023.120954
摘要

Flat heat pipes (FHPs) could be an innovative solution for thermal management in aerospace applications; without the aid of gravity, FHPs could still transport high density energy fluxes with superior temperature control and almost zero energy consumption. Inspired by the powerful transpiration and liquid transport ability of leaf vein structure of plants, a novel FHP design with bionic grading evaporator structured surface was proposed. In addition, a bi-directional transport capillary structure was built inside this FHP, reducing the vapor–liquid flow path and enhancing condensed liquid return simultaneously, and thereafter promoting phase change intensity of FHPs. In the present research, heat transfer performance of FHP with self-wetting fluid as a coolant has been experimentally investigated under anti-gravity, concerning on heat inputs, filling ratios, diameter ratios, porosities of hybrid capillary wick, and two representative tree-like evaporator plate structures (H type and Y type). Our experimental results indicated that heat transfer capability of FHP showed a minimal temperature difference, which was suitable for multi-gravity working conditions. Interestingly, minimal thermal resistance value of 0.45 ℃/W and average enhancement ratio in heat transfer coefficient of 56.39% were achieved simultaneously at anti-gravity orientations for a novel FHP with the 70 PPI and αMF = 0.2 of hybrid capillary wick. Superior vapor flow and diffusion and permeability capability of FHP were further obtained as filling ratio of 30%. Moreover, due to the Marangoni effect, the addition of SRWFs could reduce the axial and radial thermal resistance of the FHP by 5–7 % under anti-gravity condition. Compared with traditional heat sink, the novelty of this passive heat transfer application was capable for realizing high heat transport performance for aerospace flights and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzyc完成签到,获得积分10
3秒前
铁路桥完成签到,获得积分10
4秒前
李健的粉丝团团长应助lqy采纳,获得10
4秒前
sunrase发布了新的文献求助10
5秒前
TAIL完成签到,获得积分20
5秒前
烟花应助青鸟采纳,获得10
5秒前
结实的青荷完成签到,获得积分10
6秒前
6秒前
科研通AI5应助幽默的老师采纳,获得10
6秒前
6秒前
waive完成签到,获得积分10
6秒前
6秒前
6秒前
桐桐应助guohuiting采纳,获得10
7秒前
shuangshuang完成签到,获得积分10
8秒前
9秒前
10秒前
dsada完成签到,获得积分10
10秒前
科研通AI5应助Betty采纳,获得10
11秒前
11秒前
OA发布了新的文献求助10
12秒前
12秒前
lieven完成签到,获得积分10
13秒前
自觉的蜜蜂完成签到,获得积分10
13秒前
安详书蝶发布了新的文献求助10
13秒前
chengzi发布了新的文献求助10
14秒前
随便吧发布了新的文献求助10
14秒前
XSY关闭了XSY文献求助
14秒前
汤瀚文发布了新的文献求助10
14秒前
精明的道天关注了科研通微信公众号
14秒前
14秒前
jjy完成签到 ,获得积分10
15秒前
鸣风完成签到,获得积分10
16秒前
Lucas应助青鸟采纳,获得10
16秒前
Peng应助judy891zhu采纳,获得10
18秒前
18秒前
xin应助木子弓长采纳,获得20
19秒前
OA完成签到,获得积分10
19秒前
20秒前
科研通AI5应助汤瀚文采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3768954
求助须知:如何正确求助?哪些是违规求助? 3313999
关于积分的说明 10169957
捐赠科研通 3028917
什么是DOI,文献DOI怎么找? 1662170
邀请新用户注册赠送积分活动 794707
科研通“疑难数据库(出版商)”最低求助积分说明 756358