Identification of several inflammation-related genes based on bioinformatics and experiments

骨关节炎 炎症 基因 基因表达 生物信息学 生物 关节炎 疾病 计算生物学 医学 免疫学 遗传学 病理 替代医学
作者
Song Wang,Zhiwei Zhang,Jinxin Liang,Kaihuang Li,Bo Li,Haibo Zhan,Xin Hong,Jiawei Hu,Lu Yang Qian,Xuqiang Liu,B. Zhang
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:121: 110409-110409 被引量:1
标识
DOI:10.1016/j.intimp.2023.110409
摘要

Osteoarthritis (OA) is a common disease of elderly individuals, with an unclear pathogenesis and limited treatment options to date. Inflammation occurs prominently in osteoarthritis, thereby making anti-inflammatory treatments promising in clinical outcomes. Therefore, it is of diagnostic and therapeutic significance to explore more inflammatory genes.In this study, appropriate datasets were first acquired through gene set enrichment analysis (GSEA), followed by inflammation-related genes through weighted gene coexpression network analysis (WGCNA). Two machine learning algorithms (random forest-RF and support vector machine-recursive feature elimination, SVM-RFE) were used to capture the hub genes. In addition, two genes negatively associated with inflammation and osteoarthritis were identified. Afterwards, these genes were verified through experiments and network pharmacology. Due to the association between inflammation and many diseases, the expression levels of the above genes in various inflammatory diseases were determined through literature and experiments.Two hub genes closely related to osteoarthritis and inflammation were obtained, namely, lysyl oxidase-like 1 (LOXL1) and pituitary tumour-transforming gene (PTTG1), which were shown to be highly expressed in osteoarthritis according to the literature and experiments. However, the expression levels of receptor expression-enhancing protein (REEP5) and cell division cycle protein 14B (CDC14B) remained unchanged in osteoarthritis. This finding was consistent with our verification from the literature and experiments that some genes were highly expressed in numerous inflammation-related diseases, while REEP5 and CDC14B were almost unchanged. Meanwhile, taking PTTG1 as an example, we found that inhibition of PTTG1 expression could suppress the expression of inflammatory factors and protect the extracellular matrix through the microtubule-associated protein kinase (MAPK) signalling pathway.LOXL1 and PTTG1 were highly expressed in some inflammation-related diseases, while that of REEP5 and CDC14B were almost unchanged. PTTG1 may be a potential target for the treatment of osteoarthritis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助MPJ.采纳,获得10
1秒前
Jrssion发布了新的文献求助10
1秒前
YMM发布了新的文献求助10
2秒前
2秒前
2秒前
期末王发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
xfy完成签到,获得积分10
4秒前
HBXAurora完成签到,获得积分10
5秒前
未雨绸缪完成签到,获得积分10
5秒前
6秒前
懒癌晚期完成签到,获得积分10
6秒前
乐乐乐乐乐乐应助熊二浪采纳,获得10
7秒前
8秒前
8秒前
eggy发布了新的文献求助10
8秒前
8秒前
9秒前
卷卷酱发布了新的文献求助30
9秒前
HBXAurora发布了新的文献求助10
10秒前
CipherSage应助幸福大白采纳,获得10
10秒前
上官若男应助幸福大白采纳,获得10
10秒前
11秒前
科研通AI2S应助向日葵采纳,获得10
11秒前
一瓶牛发布了新的文献求助10
12秒前
111发布了新的文献求助10
12秒前
13秒前
3123939715完成签到,获得积分10
13秒前
pyc076完成签到,获得积分10
14秒前
rick3455发布了新的文献求助30
14秒前
14秒前
希望天下0贩的0应助佳loong采纳,获得10
14秒前
Leiting发布了新的文献求助10
16秒前
17秒前
wanci应助卷卷酱采纳,获得10
17秒前
18秒前
zihao0424发布了新的文献求助10
18秒前
期末王完成签到,获得积分20
19秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129723
求助须知:如何正确求助?哪些是违规求助? 2780500
关于积分的说明 7748555
捐赠科研通 2435832
什么是DOI,文献DOI怎么找? 1294313
科研通“疑难数据库(出版商)”最低求助积分说明 623670
版权声明 600570