Deep Learning for Detection and Localization of B-Lines in Lung Ultrasound

人工智能 杠杆(统计) 计算机科学 接收机工作特性 深度学习 特征工程 机器学习 模式识别(心理学)
作者
Ruben Lucassen,Mohammad H. Jafari,Nicole Duggan,Nick Jowkar,Alireza Mehrtash,Chanel Fischetti,Denié Bernier,Kira Prentice,Erik Duhaime,Mike Jin,Purang Abolmaesumi,Friso G. Heslinga,Mitko Veta,Maria A. Duran-Mendicuti,Sarah Frisken,Paul B. Shyn,Alexandra J. Golby,Edward W. Boyer,William M. Wells,Andrew J. Goldsmith,Tina Kapur
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4352-4361 被引量:8
标识
DOI:10.1109/jbhi.2023.3282596
摘要

Lung ultrasound (LUS) is an important imaging modality used by emergency physicians to assess pulmonary congestion at the patient bedside. B-line artifacts in LUS videos are key findings associated with pulmonary congestion. Not only can the interpretation of LUS be challenging for novice operators, but visual quantification of B-lines remains subject to observer variability. In this work, we investigate the strengths and weaknesses of multiple deep learning approaches for automated B-line detection and localization in LUS videos. We curate and publish, BEDLUS , a new ultrasound dataset comprising 1,419 videos from 113 patients with a total of 15,755 expert-annotated B-lines. Based on this dataset, we present a benchmark of established deep learning methods applied to the task of B-line detection. To pave the way for interpretable quantification of B-lines, we propose a novel “single-point” approach to B-line localization using only the point of origin. Our results show that (a) the area under the receiver operating characteristic curve ranges from 0.864 to 0.955 for the benchmarked detection methods, (b) within this range, the best performance is achieved by models that leverage multiple successive frames as input, and (c) the proposed single-point approach for B-line localization reaches an F $_{1}$ -score of 0.65, performing on par with the inter-observer agreement. The dataset and developed methods can facilitate further biomedical research on automated interpretation of lung ultrasound with the potential to expand the clinical utility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
火星上的沛春完成签到,获得积分10
刚刚
刚刚
羞涩的萃完成签到,获得积分10
刚刚
刚刚
真实的代丝完成签到,获得积分10
2秒前
shubiao发布了新的文献求助10
2秒前
keyantong完成签到 ,获得积分10
3秒前
3秒前
3秒前
dominate发布了新的文献求助10
4秒前
cjypdf完成签到,获得积分10
5秒前
6秒前
moxuyio完成签到,获得积分10
6秒前
6秒前
斯文败类应助蛋花肉圆汤采纳,获得10
8秒前
jia发布了新的文献求助10
8秒前
科研通AI2S应助家湘采纳,获得30
8秒前
tuanheqi应助酷酷从雪采纳,获得80
8秒前
金燕子完成签到 ,获得积分0
9秒前
肥而不腻的羚羊完成签到,获得积分10
9秒前
朴素亦云完成签到 ,获得积分10
10秒前
华仔应助mimi采纳,获得10
11秒前
krito发布了新的文献求助10
11秒前
owoow发布了新的文献求助10
12秒前
沈吃俭用完成签到,获得积分20
13秒前
Orange应助cpuczy采纳,获得10
13秒前
st完成签到,获得积分20
13秒前
14秒前
白玫瑰完成签到,获得积分10
14秒前
zhaogz完成签到,获得积分10
15秒前
葡萄成熟发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
abner发布了新的文献求助10
16秒前
香蕉觅云应助魁梧的雨双采纳,获得10
17秒前
楚小儿完成签到 ,获得积分10
19秒前
21秒前
沈吃俭用发布了新的文献求助20
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023