Conditional cross-map-based technique: From pairwise dynamical causality to causal network reconstruction

成对比较 因果关系(物理学) 计算机科学 维数之咒 数据挖掘 鉴定(生物学) 动力系统理论 多样性(控制论) 人工智能 机器学习 算法 理论计算机科学 植物 物理 量子力学 生物
作者
Liufei Yang,Wei Lin,Siyang Leng
出处
期刊:Chaos [American Institute of Physics]
卷期号:33 (6) 被引量:6
标识
DOI:10.1063/5.0144310
摘要

Causality detection methods based on mutual cross mapping have been fruitfully developed and applied to data originating from nonlinear dynamical systems, where the causes and effects are non-separable. However, these pairwise methods still have shortcomings in discriminating typical network structures, including common drivers, indirect dependencies, and facing the curse of dimensionality, when they are stepping to causal network reconstruction. A few endeavors have been devoted to conquer these shortcomings. Here, we propose a novel method that could be regarded as one of these endeavors. Our method, named conditional cross-map-based technique, can eliminate third-party information and successfully detect direct dynamical causality, where the detection results can exactly be categorized into four standard normal forms by the designed criterion. To demonstrate the practical usefulness of our model-free, data-driven method, data generated from different representative models covering all kinds of network motifs and measured from real-world systems are investigated. Because correct identification of the direct causal links is essential to successful modeling, predicting, and controlling the underlying complex systems, our method does shed light on uncovering the inner working mechanisms of real-world systems only using the data experimentally obtained in a variety of disciplines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
000发布了新的文献求助10
2秒前
阿九发布了新的文献求助10
2秒前
2秒前
科目三应助周鑫采纳,获得10
3秒前
脑洞疼应助机智若雁采纳,获得10
3秒前
ZMK发布了新的文献求助10
3秒前
情怀应助科研小白采纳,获得10
5秒前
内向苡完成签到,获得积分10
5秒前
喜悦的莹发布了新的文献求助10
5秒前
bkagyin应助努力学习采纳,获得10
6秒前
知菡发布了新的文献求助10
7秒前
shenqian发布了新的文献求助10
7秒前
汉堡包应助小全采纳,获得10
7秒前
华仔应助oy采纳,获得10
7秒前
小李在哪儿完成签到 ,获得积分10
9秒前
SYLH应助VDC采纳,获得10
11秒前
zpc发布了新的文献求助30
14秒前
14秒前
Nollet完成签到 ,获得积分10
14秒前
L7.关注了科研通微信公众号
14秒前
15秒前
缥缈的青旋完成签到,获得积分10
15秒前
Lucas应助喜悦的莹采纳,获得10
17秒前
ddd发布了新的文献求助10
17秒前
今后应助LHW采纳,获得30
18秒前
Blank发布了新的文献求助10
18秒前
科研通AI5应助阿九采纳,获得10
20秒前
20秒前
科研通AI5应助科研通管家采纳,获得30
21秒前
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
猪猪hero应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得30
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738049
求助须知:如何正确求助?哪些是违规求助? 3281565
关于积分的说明 10026096
捐赠科研通 2998320
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782682
科研通“疑难数据库(出版商)”最低求助积分说明 749882