A Deep Learning Model for Automatic Segmentation of Intraparenchymal and Intraventricular Hemorrhage for Catheter Puncture Path Planning

脑室出血 实质内出血 医学 血肿 脑出血 人工智能 分割 图像分割 计算机视觉 放射科 计算机科学 外科 格拉斯哥昏迷指数 怀孕 遗传学 蛛网膜下腔出血 生物 胎龄
作者
Guoyu Tong,Xi Wang,Huiyan Jiang,Anhua Wu,Wen Cheng,Xiao Cui,Long Le Bao,Ruikai Cai,Wei Cai
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4454-4465 被引量:9
标识
DOI:10.1109/jbhi.2023.3285809
摘要

Intracerebral hemorrhage is the subtype of stroke with the highest mortality rate, especially when it also causes secondary intraventricular hemorrhage. The optimal surgical option for intracerebral hemorrhage remains one of the most controversial areas of neurosurgery. We aim to develop a deep learning model for the automatic segmentation of intraparenchymal and intraventricular hemorrhage for clinical catheter puncture path planning. First, we develop a 3D U-Net embedded with a multi-scale boundary aware module and a consistency loss for segmenting two types of hematoma in computed tomography images. The multi-scale boundary aware module can improve the model's ability to understand the two types of hematoma boundaries. The consistency loss can reduce the probability of classifying a pixel into two categories at the same time. Since different hematoma volumes and locations have different treatments. We also measure hematoma volume, estimate centroid deviation, and compare with clinical methods. Finally, we plan the puncture path and conduct clinical validation. We collected a total of 351 cases, and the test set contained 103 cases. For intraparenchymal hematomas, the accuracy can reach 96 % when the proposed method is applied for path planning. For intraventricular hematomas, the proposed model's segmentation efficiency and centroid prediction are superior to other comparable models. Experimental results and clinical practice show that the proposed model has potential for clinical application. In addition, our proposed method has no complicated modules and improves efficiency, with generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦幻发布了新的文献求助10
1秒前
楚博完成签到,获得积分10
1秒前
Am1r完成签到,获得积分10
1秒前
hannah发布了新的文献求助20
2秒前
赵康康发布了新的文献求助10
2秒前
蒸盐粥发布了新的文献求助10
5秒前
5秒前
7秒前
8秒前
实验顺利完成签到,获得积分10
9秒前
不期而遇发布了新的文献求助10
9秒前
9秒前
我是老大应助拼搏的无心采纳,获得10
10秒前
11秒前
11秒前
烟花应助hay采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
XUXU发布了新的文献求助10
12秒前
老黄鱼完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
顺心的海菡完成签到,获得积分10
14秒前
亦犹未进发布了新的文献求助10
16秒前
Ljq发布了新的文献求助10
17秒前
ahhh发布了新的文献求助10
17秒前
虚拟的鼠标完成签到,获得积分10
18秒前
梦幻完成签到 ,获得积分10
19秒前
21秒前
pengze发布了新的文献求助10
23秒前
23秒前
在水一方应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
BowieHuang应助科研通管家采纳,获得10
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
Owen应助科研通管家采纳,获得10
24秒前
BowieHuang应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得30
24秒前
Owen应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365