A Deep Learning Model for Automatic Segmentation of Intraparenchymal and Intraventricular Hemorrhage for Catheter Puncture Path Planning

脑室出血 实质内出血 医学 血肿 脑出血 人工智能 分割 图像分割 计算机视觉 放射科 计算机科学 外科 格拉斯哥昏迷指数 怀孕 遗传学 蛛网膜下腔出血 生物 胎龄
作者
Guoyu Tong,Xi Wang,Huiyan Jiang,Anhua Wu,Wen Cheng,Xiao Cui,Long Bao,Ruikai Cai,Wei Cai
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4454-4465 被引量:6
标识
DOI:10.1109/jbhi.2023.3285809
摘要

Intracerebral hemorrhage is the subtype of stroke with the highest mortality rate, especially when it also causes secondary intraventricular hemorrhage. The optimal surgical option for intracerebral hemorrhage remains one of the most controversial areas of neurosurgery. We aim to develop a deep learning model for the automatic segmentation of intraparenchymal and intraventricular hemorrhage for clinical catheter puncture path planning. First, we develop a 3D U-Net embedded with a multi-scale boundary aware module and a consistency loss for segmenting two types of hematoma in computed tomography images. The multi-scale boundary aware module can improve the model's ability to understand the two types of hematoma boundaries. The consistency loss can reduce the probability of classifying a pixel into two categories at the same time. Since different hematoma volumes and locations have different treatments. We also measure hematoma volume, estimate centroid deviation, and compare with clinical methods. Finally, we plan the puncture path and conduct clinical validation. We collected a total of 351 cases, and the test set contained 103 cases. For intraparenchymal hematomas, the accuracy can reach 96 % when the proposed method is applied for path planning. For intraventricular hematomas, the proposed model's segmentation efficiency and centroid prediction are superior to other comparable models. Experimental results and clinical practice show that the proposed model has potential for clinical application. In addition, our proposed method has no complicated modules and improves efficiency, with generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到,获得积分10
刚刚
1秒前
西科Jeremy发布了新的文献求助10
1秒前
熬夜拜拜发布了新的文献求助10
2秒前
kirin发布了新的文献求助10
2秒前
DT完成签到,获得积分10
2秒前
王小龙发布了新的文献求助20
3秒前
努力学习冲冲冲应助shi hui采纳,获得10
3秒前
Jasper应助敲敲采纳,获得10
3秒前
4秒前
4秒前
6秒前
学术菜鸡123完成签到,获得积分10
6秒前
Jasper应助辛夷采纳,获得10
6秒前
aldehyde应助李沛书采纳,获得10
6秒前
善学以致用应助李沛书采纳,获得10
6秒前
ding应助feifei264837采纳,获得10
6秒前
LL发布了新的文献求助10
6秒前
orixero应助江书怡采纳,获得10
6秒前
6秒前
小猫奶醉发布了新的文献求助30
7秒前
热心冷亦完成签到,获得积分10
7秒前
ning发布了新的文献求助10
7秒前
tigger发布了新的文献求助10
7秒前
8秒前
彩色寻双完成签到,获得积分10
9秒前
9秒前
9秒前
binjason_zhang完成签到,获得积分10
9秒前
喜柚子完成签到 ,获得积分10
9秒前
大秦骑兵完成签到,获得积分10
9秒前
府于杰完成签到,获得积分10
9秒前
GH驳回了无花果应助
10秒前
追梦发布了新的文献求助30
10秒前
Cleo应助无语采纳,获得20
10秒前
Harrison发布了新的文献求助10
10秒前
账户已注销完成签到,获得积分0
11秒前
11秒前
善学以致用应助SnowHee采纳,获得10
12秒前
小南完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402507
求助须知:如何正确求助?哪些是违规求助? 4521132
关于积分的说明 14084150
捐赠科研通 4435162
什么是DOI,文献DOI怎么找? 2434563
邀请新用户注册赠送积分活动 1426697
关于科研通互助平台的介绍 1405496