A Deep Learning Model for Automatic Segmentation of Intraparenchymal and Intraventricular Hemorrhage for Catheter Puncture Path Planning

脑室出血 实质内出血 医学 人工智能 分割 路径(计算) 深度学习 图像分割 计算机视觉 放射科 计算机科学 外科 计算机网络 怀孕 遗传学 蛛网膜下腔出血 生物 胎龄
作者
Guoyu Tong,Xi Wang,Huiyan Jiang,Anhua Wu,Wen Cheng,Xiao Cui,Long Bao,Ruikai Cai,Wei Cai
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4454-4465 被引量:3
标识
DOI:10.1109/jbhi.2023.3285809
摘要

Intracerebral hemorrhage is the subtype of stroke with the highest mortality rate, especially when it also causes secondary intraventricular hemorrhage. The optimal surgical option for intracerebral hemorrhage remains one of the most controversial areas of neurosurgery. We aim to develop a deep learning model for the automatic segmentation of intraparenchymal and intraventricular hemorrhage for clinical catheter puncture path planning. First, we develop a 3D U-Net embedded with a multi-scale boundary aware module and a consistency loss for segmenting two types of hematoma in computed tomography images. The multi-scale boundary aware module can improve the model's ability to understand the two types of hematoma boundaries. The consistency loss can reduce the probability of classifying a pixel into two categories at the same time. Since different hematoma volumes and locations have different treatments. We also measure hematoma volume, estimate centroid deviation, and compare with clinical methods. Finally, we plan the puncture path and conduct clinical validation. We collected a total of 351 cases, and the test set contained 103 cases. For intraparenchymal hematomas, the accuracy can reach 96 $ \% $ when the proposed method is applied for path planning. For intraventricular hematomas, the proposed model's segmentation efficiency and centroid prediction are superior to other comparable models. Experimental results and clinical practice show that the proposed model has potential for clinical application. In addition, our proposed method has no complicated modules and improves efficiency, with generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无名完成签到,获得积分10
1秒前
1秒前
2秒前
平淡寄云完成签到,获得积分10
6秒前
可靠的念柏应助活泼红牛采纳,获得10
6秒前
李健应助葵葵采纳,获得30
6秒前
天天快乐应助白苏采纳,获得10
6秒前
7秒前
鲜艳的向南完成签到 ,获得积分10
7秒前
7秒前
ASHhan111完成签到,获得积分10
8秒前
9秒前
chaning发布了新的文献求助10
10秒前
velen完成签到,获得积分10
10秒前
kjlee完成签到,获得积分10
11秒前
糊涂的勒发布了新的文献求助10
12秒前
13秒前
13秒前
细心尔琴发布了新的文献求助10
15秒前
Akim应助hxnz2001采纳,获得10
16秒前
科研張应助红李子采纳,获得30
16秒前
16秒前
17秒前
Tao发布了新的文献求助10
18秒前
缥缈冷亦发布了新的文献求助10
19秒前
飘逸锦程完成签到 ,获得积分10
19秒前
二牛发布了新的文献求助30
20秒前
20秒前
精明芷雪完成签到,获得积分10
20秒前
21秒前
21秒前
B1ackSugar完成签到,获得积分10
22秒前
22秒前
22秒前
和谐小霸王完成签到 ,获得积分10
22秒前
23秒前
江浪浪应助高贵花瓣采纳,获得30
23秒前
青炀完成签到,获得积分10
24秒前
思源应助佳佳采纳,获得10
25秒前
bly发布了新的文献求助10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799361
捐赠科研通 2447868
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194