已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Learning Model for Automatic Segmentation of Intraparenchymal and Intraventricular Hemorrhage for Catheter Puncture Path Planning

脑室出血 实质内出血 医学 血肿 脑出血 人工智能 分割 图像分割 计算机视觉 放射科 计算机科学 外科 格拉斯哥昏迷指数 怀孕 遗传学 蛛网膜下腔出血 生物 胎龄
作者
Guoyu Tong,Xi Wang,Huiyan Jiang,Anhua Wu,Wen Cheng,Xiao Cui,Long Bao,Ruikai Cai,Wei Cai
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4454-4465 被引量:4
标识
DOI:10.1109/jbhi.2023.3285809
摘要

Intracerebral hemorrhage is the subtype of stroke with the highest mortality rate, especially when it also causes secondary intraventricular hemorrhage. The optimal surgical option for intracerebral hemorrhage remains one of the most controversial areas of neurosurgery. We aim to develop a deep learning model for the automatic segmentation of intraparenchymal and intraventricular hemorrhage for clinical catheter puncture path planning. First, we develop a 3D U-Net embedded with a multi-scale boundary aware module and a consistency loss for segmenting two types of hematoma in computed tomography images. The multi-scale boundary aware module can improve the model's ability to understand the two types of hematoma boundaries. The consistency loss can reduce the probability of classifying a pixel into two categories at the same time. Since different hematoma volumes and locations have different treatments. We also measure hematoma volume, estimate centroid deviation, and compare with clinical methods. Finally, we plan the puncture path and conduct clinical validation. We collected a total of 351 cases, and the test set contained 103 cases. For intraparenchymal hematomas, the accuracy can reach 96 % when the proposed method is applied for path planning. For intraventricular hematomas, the proposed model's segmentation efficiency and centroid prediction are superior to other comparable models. Experimental results and clinical practice show that the proposed model has potential for clinical application. In addition, our proposed method has no complicated modules and improves efficiency, with generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
JamesPei应助花椰菜采纳,获得10
3秒前
3秒前
田様应助LAZYj采纳,获得10
4秒前
jialin完成签到 ,获得积分10
4秒前
5秒前
tian完成签到 ,获得积分10
5秒前
田様应助liuqizong123采纳,获得10
6秒前
Owen应助慕凝采纳,获得10
6秒前
6秒前
虚心的渊思完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI5应助大只佬采纳,获得10
8秒前
冷傲向雪完成签到,获得积分10
9秒前
kimky发布了新的文献求助10
10秒前
文静的芝发布了新的文献求助10
12秒前
15秒前
小蘑菇应助酷炫若枫采纳,获得10
15秒前
17秒前
Jenkin完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
NexusExplorer应助bonster采纳,获得10
22秒前
研友_ZbP41L发布了新的文献求助10
22秒前
22秒前
迟大猫应助jiajia采纳,获得10
23秒前
23秒前
23秒前
慕凝发布了新的文献求助10
24秒前
米粒完成签到,获得积分10
24秒前
文静的芝完成签到,获得积分10
26秒前
26秒前
别当真完成签到 ,获得积分10
27秒前
28秒前
liuqizong123发布了新的文献求助10
28秒前
凉意发布了新的文献求助10
28秒前
阿光发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666266
求助须知:如何正确求助?哪些是违规求助? 3225307
关于积分的说明 9762401
捐赠科研通 2935195
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759223
科研通“疑难数据库(出版商)”最低求助积分说明 735185