Improving Image Captioning Systems With Postprocessing Strategies

计算机科学 隐藏字幕 判别式 人工智能 编码器 卷积神经网络 维特比算法 隐马尔可夫模型 循环神经网络 解码方法 判决 过程(计算) 维特比译码器 模式识别(心理学) 语音识别 人工神经网络 图像(数学) 算法 操作系统
作者
Genc Hoxha,Giacomo Scuccato,Farid Melgani
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:1
标识
DOI:10.1109/tgrs.2023.3281334
摘要

Image captioning (IC) systems are generally based on encoder–decoder architecture where convolutional neural networks (CNNs) are employed to represent an image with discriminative features and recurrent neural networks (RNNs) sequentially generate a sentence description. Even though a lot of effort has been devoted lately to designing reliable IC systems, the task is far from being solved. The generated descriptions can be affected by different errors related to the attributes and the objects present in the scene. Moreover, once an error occurs, it can be propagated in the recurrent layers of the decoder generating non-accurate descriptions. To solve this problem, we propose two postprocessing strategies applied to the generated descriptions to rectify the errors and improve their quality. The proposed postprocessing strategies are based on hidden Markov models (HMMs) and Viterbi algorithm. The proposed postprocessing strategies can be applied to any encoder–decoder IC system. They are applied at test time once the IC system is trained. In particular, we propose to rectify a sentence once it is fully generated (post-generation strategy) or at each time instant of the generation process (in-generation strategy). Experiments conducted on four different IC datasets confirm the promising capabilities of the proposed postprocessing strategies to rectify the output of a simple encoder–decoder by generating more coherent descriptions. The achieved results are competitive and sometimes better than complex IC systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小苗完成签到,获得积分10
2秒前
QDU关闭了QDU文献求助
3秒前
铲铲完成签到,获得积分10
4秒前
酷波er应助shineedou采纳,获得10
4秒前
crescendo完成签到,获得积分10
5秒前
木子木子粒完成签到 ,获得积分10
5秒前
7秒前
暗号完成签到 ,获得积分10
7秒前
观察者小黑完成签到,获得积分10
8秒前
DUAN完成签到,获得积分10
14秒前
寒冷的寻菱完成签到,获得积分10
16秒前
8R60d8应助fall采纳,获得30
16秒前
无花果应助fall采纳,获得10
16秒前
无限尔云发布了新的文献求助10
18秒前
19秒前
albertchan完成签到,获得积分10
20秒前
21秒前
WHHEY完成签到,获得积分20
21秒前
量子星尘发布了新的文献求助10
22秒前
热心市民小红花应助HH采纳,获得30
22秒前
22秒前
超帅连虎发布了新的文献求助10
24秒前
早点毕业完成签到 ,获得积分10
25秒前
SYLH应助WHHEY采纳,获得30
26秒前
李健的小迷弟应助Little2采纳,获得10
26秒前
wanci应助无限尔云采纳,获得10
28秒前
迅速的奇异果完成签到,获得积分10
28秒前
998发布了新的文献求助30
28秒前
Pooh完成签到 ,获得积分10
30秒前
30秒前
36秒前
Little2发布了新的文献求助10
36秒前
柒月给柒月的求助进行了留言
37秒前
lzd完成签到,获得积分10
39秒前
39秒前
Nikola完成签到 ,获得积分10
40秒前
pups发布了新的文献求助10
47秒前
急雪回风完成签到,获得积分10
49秒前
53秒前
落忆完成签到 ,获得积分10
55秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150