清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fat distribution measurements by chemical shift‐encoded transition region extraction predict the risk of hyperglycaemia, dyslipidaemia and metabolic syndrome in mice

代谢综合征 内科学 逻辑回归 肥胖 内分泌学 接收机工作特性 腹部肥胖 医学 甘油三酯 优势比 胆固醇 胃肠病学
作者
Hui‐Xuan Wu,Xiao Lin,Chuanli Cheng,Hong‐Li Jiang,Junaid Iqbal,Jun Liu,Hou‐De Zhou
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:36 (10)
标识
DOI:10.1002/nbm.4985
摘要

Metabolically healthy or unhealthy obesity is closely related to metabolic syndrome (MetS). To validate a more accurate diagnostic method for obesity that reflects the risk of metabolic disorders in a pre-clinical mouse model, C57BL/6J mice were fed high-sucrose-high-fat and chow diets for 12 weeks to induce obesity. MRI was performed and analysed by chemical shift-encoded fat-water separation based on the transition region extraction method. Abdominal fat was divided into upper and lower abdominal regions at the horizontal lower border of the liver. Blood samples were collected, and the glucose level, lipid profile, liver function, HbA1c and insulin were tested. k-means clustering and stepwise logistic regression were applied to validate the diagnosis of hyperglycaemia, dyslipidaemia and MetS, and to ascertain the predictive effect of MRI-derived parameters to the metabolic disorders. Pearson or Spearman correlation was used to assess the relationship between MRI-derived parameters and metabolic traits. The receiver-operating characteristic curve was used to evaluate the diagnostic effect of each logistic regression model. A two-sided p value less than 0.05 was considered to indicate statistical significance for all tests. We made the precise diagnosis of obesity, dyslipidaemia, hyperglycaemia and MetS in mice. In all, 14 mice could be diagnosed as having MetS, and the levels of body weight, HbA1c, triglyceride, total cholesterol and low-density lipoprotein cholesterol were significantly higher than in the normal group. Upper abdominal fat better predicted dyslipidaemia (odds ratio, OR = 2.673; area under the receiver-operating characteristic curve, AUCROC = 0.9153) and hyperglycaemia (OR = 2.456; AUCROC = 0.9454), and the abdominal visceral adipose tissue (VAT) was better for predicting MetS risk (OR = 1.187; AUCROC = 0.9619). We identified the predictive effect of fat volume and distribution in dyslipidaemia, hyperglycaemia and MetS. The upper abdominal fat played a better predictive role for the risk of dyslipidaemia and hyperglycaemia, and the abdominal VAT played a better predictive role for the risk of MetS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
violetlishu完成签到 ,获得积分10
20秒前
自由飞翔完成签到 ,获得积分10
31秒前
meijuan1210完成签到 ,获得积分10
32秒前
jerry完成签到 ,获得积分10
53秒前
mictime完成签到,获得积分10
1分钟前
creep2020完成签到,获得积分10
1分钟前
iberis完成签到 ,获得积分10
1分钟前
风衣拖地完成签到 ,获得积分10
1分钟前
ww完成签到,获得积分10
1分钟前
QinQin完成签到,获得积分10
2分钟前
QinQin发布了新的文献求助30
2分钟前
白菜完成签到 ,获得积分10
2分钟前
吴红波发布了新的文献求助10
2分钟前
3分钟前
ccjjww25发布了新的文献求助10
3分钟前
ccjjww25完成签到,获得积分10
3分钟前
龙猫爱看书完成签到,获得积分10
3分钟前
红箭烟雨完成签到,获得积分10
4分钟前
4分钟前
学术完成签到 ,获得积分10
5分钟前
Liangstar完成签到 ,获得积分10
5分钟前
迅速的蜡烛完成签到 ,获得积分10
6分钟前
爆米花应助QinQin采纳,获得10
7分钟前
吴红波完成签到,获得积分10
7分钟前
7分钟前
吴红波发布了新的文献求助10
7分钟前
QinQin发布了新的文献求助10
7分钟前
小朱完成签到 ,获得积分10
7分钟前
哈哈哈发布了新的文献求助10
8分钟前
8分钟前
中中中完成签到 ,获得积分10
8分钟前
蟹蟹发布了新的文献求助10
8分钟前
8分钟前
蟹蟹发布了新的文献求助10
8分钟前
科研通AI2S应助哈哈哈采纳,获得10
9分钟前
Cheney完成签到 ,获得积分10
9分钟前
neurology完成签到,获得积分20
10分钟前
科研搬运工完成签到,获得积分10
10分钟前
neurology发布了新的文献求助50
10分钟前
未完成完成签到,获得积分10
10分钟前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219922
求助须知:如何正确求助?哪些是违规求助? 2868530
关于积分的说明 8161257
捐赠科研通 2535544
什么是DOI,文献DOI怎么找? 1368118
科研通“疑难数据库(出版商)”最低求助积分说明 645127
邀请新用户注册赠送积分活动 618477