神经病理性疼痛
小胶质细胞
SNi公司
医学
药理学
安普克
米诺环素
脊髓
腰脊髓
神经保护
神经损伤
伤害
蛋白激酶A
化学
受体
内科学
炎症
麻醉
磷酸化
生物化学
抗生素
精神科
水解
酸水解
作者
Jinhong Jiang,Lingfei Xu,Long Yang,Su Liu,Zhe Wang
标识
DOI:10.1021/acschemneuro.3c00140
摘要
MOTS-c, a recently discovered mitochondrial-derived peptide, plays an important role in many physiological and pathological functions via adenosine monophosphate-activated protein kinase (AMPK) activation. Numerous studies have demonstrated that AMPK is an emerging target for the modulation of neuropathic pain. Meanwhile, microglia-activation-evoked neuroinflammation is known to contribute to the development and progression of neuropathic pain. MOTS-c is also known to inhibit microglia activation, chemokine and cytokine expression, and innate immune responses. Accordingly, in this study, we evaluated the effects of MOTS-c on neuropathic pain and investigated the putative underlying mechanisms. We found that MOTS-c levels in plasma and spinal dorsal horn were significantly lower in mice with spared nerve injury (SNI)-induced neuropathic pain than in control animals. Accordingly, MOTS-c treatment produced pronounced dose-dependent antinociceptive effects in SNI mice; however, these effects were blocked by dorsomorphin, an AMPK inhibitor, but not naloxone, a nonselective opioid receptor antagonist. Moreover, intrathecal (i.t.) injection of MOTS-c significantly enhanced AMPKα1/2 phosphorylation in the lumbar spinal cord of SNI mice. MOTS-c also significantly inhibited proinflammatory cytokine production and microglia activation in the spinal cord. The antinociceptive effects of MOTS-c were retained even when microglia activation in the spinal cord was inhibited by minocycline pretreatment, indicating that spinal cord microglia are dispensable for the antiallodynic effects of MOTS-c. In the spinal dorsal horn, MOTS-c treatment inhibited c-Fos expression and oxidative damage mainly in neurons rather than microglia. Finally, in contrast to morphine, i.t. administration of MOTS-c resulted in limited side effects relating to antinociceptive tolerance, gastrointestinal transit inhibition, locomotor function, and motor coordination. Collectively, the present study is the first to provide evidence that MOTS-c may be a promising therapeutic target for neuropathic pain.
科研通智能强力驱动
Strongly Powered by AbleSci AI