Orbit-lattice coupling leads to the intrinsic low thermal conductivity in MTe(M=Ge,Sn,Pb) thermoelectric materials

热导率 联轴节(管道) 格子(音乐) 物理 计算机科学 凝聚态物理 材料科学 热力学 声学 冶金
作者
Yan Wang,Mingyuan Hu,Lin Xie,Jiaqing He
出处
期刊:Physical review [American Physical Society]
卷期号:109 (20) 被引量:3
标识
DOI:10.1103/physrevb.109.205204
摘要

The intrinsic low thermal conductivity of ${A}^{\mathrm{IV}}\phantom{\rule{0.16em}{0ex}}{B}^{\mathrm{VI}}$ thermoelectric materials has been widely accepted as being closely related to specific chemical bonding or electronic states, for example, resonant bonding, the lone-pair effect, and metavalent bonding. These concepts have different characteristics of localized or delocalized electronic state mechanisms; i.e., resonant bonding corresponds to localized electronic states, the lone-pair effect is correlated with delocalized $ns$ electronic states, and metavalent bonding is characterized by the competition between localized and delocalized electronic states. It seems that those concepts are contradictory in describing ${A}^{\mathrm{IV}}\phantom{\rule{0.16em}{0ex}}{B}^{\mathrm{VI}}$ materials such as GeTe, SnTe, and PbTe simultaneously. Meanwhile, the direct connection between electrons, lattice vibration, and low thermal conductivity is still unclear. Herein, differently from most of the existing works, we focus on how electronic states couple with lattice vibration in the concept of the pseudo-Jahn-Teller effect. Then we propose a general theoretical interpretation (orbital-lattice coupling) to describe the intimate relationship between electronic states and ultralow lattice thermal conductivity in thermoelectric materials or any other strong anharmonic systems. Taking the classical thermoelectric materials (GeTe, SnTe, and PbTe) and the typical ionic crystal NaCl, all with high-symmetry rocksalt structure, as examples, we reveal that the electronic states of ${A}^{\mathrm{IV}}\phantom{\rule{0.16em}{0ex}}{B}^{\mathrm{VI}}$ materials tend to spontaneously break their lattice symmetry to avoid degeneracy. Afterwards, the dynamic charge transfer and electronic orbital overlapping under atomic distortion lower the total energy, effectively. The coupled electronic orbitals are therefore linked to lattice instability. Our results build a direct bridge between electrons and lattice, thus providing an important insight into the combination of novel electronic properties and inherent low thermal conductivity, which is general in understanding thermoelectric properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助hymmloveGD采纳,获得10
2秒前
Drwang完成签到,获得积分10
2秒前
科研通AI6应助渴望者采纳,获得10
2秒前
nanan完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
可耐的从安完成签到 ,获得积分10
3秒前
天天快乐应助handan采纳,获得30
3秒前
JamesPei应助樊珩采纳,获得10
4秒前
4秒前
FashionBoy应助Jackson_Cai采纳,获得10
6秒前
领导范儿应助zhaosh采纳,获得10
6秒前
6秒前
浮游应助成就山菡采纳,获得10
6秒前
7秒前
大胆峻熙完成签到,获得积分20
8秒前
yyuu发布了新的文献求助10
9秒前
JJ发布了新的文献求助30
11秒前
11秒前
Kirin完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
hahaer完成签到,获得积分10
12秒前
12秒前
万能图书馆应助樊珩采纳,获得10
13秒前
lyon完成签到,获得积分10
14秒前
幽默鱼完成签到,获得积分10
14秒前
nini发布了新的文献求助10
14秒前
SciGPT应助hahaer采纳,获得10
16秒前
16秒前
17秒前
虚幻采枫发布了新的文献求助10
18秒前
18秒前
夏天的风完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
天天快乐应助lin采纳,获得10
20秒前
科研通AI2S应助ahxb采纳,获得10
20秒前
猫猫叽丫丫完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109272
求助须知:如何正确求助?哪些是违规求助? 4318042
关于积分的说明 13453386
捐赠科研通 4147922
什么是DOI,文献DOI怎么找? 2272930
邀请新用户注册赠送积分活动 1275085
关于科研通互助平台的介绍 1213282