Fluid identification with Graph Transformer using well logging data

物理 变压器 电压 量子力学
作者
Youzhuang Sun,Shanchen Pang,Yongan Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (6) 被引量:1
标识
DOI:10.1063/5.0211182
摘要

The prediction of fluid through well logging is a cornerstone in guiding exploratory efforts in the energy sector. Comprehending the fluid composition beneath the surface empowers exploration teams to effectively gauge the extent, reserves, and caliber of oil and gas resources. This leads to enhanced strategies in exploration and the judicious use of resources. We introduce an innovative machine learning framework named “Graph Transformer” for predicting fluid. This model melds graph convolutional layers with a Transformer module. It excels in decoding spatial and temporal patterns within well logging data, thus unraveling complex geological dependencies by factoring in the interconnectedness of various data points. Additionally, it features a Positional Encoding module to enhance understanding of sequential data points in terms of depth, thereby overcoming the limitations of sequence independence. The Transformer's Multi-Head Self-Attention mechanism is pivotal in discerning and integrating spatial and temporal interconnections across various depths, elevating its capability to represent geological structures. Initially, the model harnesses key well log data like Density, Acoustic, Gamma-ray, and Compensated Neutron Logs for extracting geological features. These insights are then processed through the Graph Transformer to establish relationship between fluid characteristics and logging parameters. Furthermore, we compare this model with other leading models using precision, recall, and accuracy metrics. Experimental findings affirm the model's high accuracy in predicting fluid within intricate geological settings. Its exceptional adaptability makes it apt for various geological conditions and logging tools. Thus, our Graph Transformer model stands out as a sophisticated, efficient machine learning solution in the realm of well logging fluid prediction, offering geologists and engineers precise tools for exploration and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FanFan完成签到,获得积分10
2秒前
温倩男完成签到,获得积分10
3秒前
leilei发布了新的文献求助10
4秒前
4秒前
坦率抽屉完成签到 ,获得积分10
5秒前
情怀应助穿堂风采纳,获得10
5秒前
iWatchTheMoon应助ashore采纳,获得10
5秒前
xiaogui完成签到,获得积分10
5秒前
木槿花难开完成签到,获得积分10
6秒前
7秒前
阳光he完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助虾502采纳,获得10
11秒前
现代小笼包完成签到,获得积分20
12秒前
12秒前
Lucas应助研究牲采纳,获得10
13秒前
黄秃秃秃秃完成签到,获得积分10
14秒前
玩命做科研完成签到,获得积分10
15秒前
修fei完成签到 ,获得积分10
15秒前
bkagyin应助ljq采纳,获得10
17秒前
不去明知山完成签到,获得积分10
17秒前
几酌应助震动的幻枫采纳,获得20
18秒前
淡淡妙竹完成签到 ,获得积分10
20秒前
23秒前
超级如风发布了新的文献求助100
24秒前
yayaya应助干净松采纳,获得10
25秒前
wukong完成签到,获得积分10
26秒前
27秒前
ljq发布了新的文献求助10
28秒前
28秒前
30秒前
小猛人发布了新的文献求助10
33秒前
Yi发布了新的文献求助30
33秒前
36秒前
zzz完成签到 ,获得积分10
38秒前
体贴半仙发布了新的文献求助10
41秒前
研友_VZG7GZ应助衰神采纳,获得10
42秒前
vigor完成签到 ,获得积分10
42秒前
trojan621应助YMM采纳,获得10
42秒前
44秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162896
求助须知:如何正确求助?哪些是违规求助? 2813938
关于积分的说明 7902359
捐赠科研通 2473525
什么是DOI,文献DOI怎么找? 1316888
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187